Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (5): 527-533.doi: 10.7518/gjkq.2018.05.006

• Implantology • Previous Articles     Next Articles

Effects of titanium implant surface topographies on osteogenesis

Xingying Qi,Guoying Zheng,Lei. Sui()   

  1. Dept. of Prosthodontics, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, China
  • Received:2017-12-20 Revised:2018-06-04 Online:2018-09-01 Published:2018-09-20
  • Contact: Lei. Sui


The surface topography of titanium implants is one of the most important factors affecting implant-bone integration. At present, several methods, such as microtopography, nanotopography, and hierarchical hybrid microtopography/nanotopography, have been applied to modify titanium implant surfaces. These techniques promote implant osseointegration more extensively compared with smooth surfaces without modifications. The present study reviews different titanium implant surfaces, including their characteristics, modification methods, and effects on the adhesion, proliferation, and differentiation of osteoblasts. This work provides a reference for optimizing surface designs and achieving early osseointegration.

Key words: titanium implant, surface topography, microstructure, nanostructure, osseointegration

CLC Number: 

  • R783.3

[1] Huang QL, Liu XJ, Yang X , et al. Specific heat treatment of selective laser melted Ti-6Al-4V for biomedical applications[J]. Front Mater Sci, 2015,9(4):373-381.
doi: 10.1007/s11706-015-0315-7
[2] 王方辉, 张姗姗, 舒静媛 , 等. 纯钛种植体表面改性对骨结合的影响[J]. 中国组织工程研究, 2014,18(52):8491-8497.
Wang FH, Zhang SS, Shu JY , et al. Effects of sur-face modification of titanium implants on the osseo-integration[J]. J Clin Rehabil Tissue Eng Res, 2014,18(52):8491-8497.
[3] 陈西文, 朱智敏 . 纯钛在口腔修复中的应用[J]. 中国实用口腔科杂志, 2014,7(3):188-192.
Chen XW, Zhu ZM . The application of titanium in prosthodontics[J]. Chin J Pract Stomatol, 2014,7(3):188-192.
[4] Wang MK, Chen T, Lu SH , et al. Osteogenic com-parison on selective laser melting printed and sand-blasting-acid-etching Ti substrates for customized implant applications[J]. Sci Adv Mater, 2017,9(5):705-714.
doi: 10.1166/sam.2017.3012
[5] Zahran R , RosalesLeal JI, RodríguezValverde MA, et al. Effect of hydrofluoric acid etching time on titanium topography, chemistry, wettability, and cell adhesion[J]. PLoS One, 2016,11(11):e0165296.
doi: 10.1371/journal.pone.0165296
[6] Manjaiah M, Laubscher RF , Effect of anodizing on surface integrity of Grade 4 titanium for biomedical applications[J]. Surf Coat Technol, 2017,313:425.
doi: 10.1016/j.surfcoat.2017.01.077
[7] Kaluđerović MR, Schreckenbach JP, Graf HL , Ti-tanium dental implant surfaces obtained by anodic spark deposition—from the past to the future[J]. Mater Sci Eng: C, 2016,69:1429-1441.
doi: 10.1016/j.msec.2016.07.068
[8] Meng HW, Chien EY, Chien HH , Dental implant bioactive surface modifications and their effects on osseointegration: a review[J]. Biomark Res, 2016,4(1):24.
doi: 10.1186/s40364-016-0078-z pmid: 5155396
[9] Omar O, Karazisis D, Ballo A , et al. The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo[J]. Int J Nanomedicine, 2016,11:1367-1381.
[10] Schwartz Z, Boyan BD , Underlying mechanisms at the bone-biomaterial interface[J]. J Cell Biochem, 1994,56(3):340-347.
doi: 10.1002/jcb.240560310 pmid: 7876327
[11] Hacking SA, Tanzer M, Harvey EJ , et al. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings[J]. Clin Orthop Relat Res, 2002(405):24-38.
[12] Mendonça G, Mendonça DB, Aragão FJ , et al. Advancing dental implant surface technology—from micron- to nano-topography[J]. Biomaterials, 2008,29(28):3822-3835.
doi: 10.1016/j.biomaterials.2008.05.012 pmid: 2020202020202020
[13] 耿双双, 赵宝红 . 增强钛种植体表面亲水性能研究进展[J]. 中国实用口腔科杂志, 2016,9(6):368-372.
doi: 10.7504/kq.2016.06.012
Geng SS, Zhao BH . Research progress of hydrophi-licity enhancement of titanium implant surface[J]. Chin J Pract Stomatol, 2016,9(6):368-372.
doi: 10.7504/kq.2016.06.012
[14] 张静超, 莫安春 . 钛种植体表面微结构对成骨细胞影响的研究进展[J]. 国际口腔医学杂志, 2007,34(3):207-209.
Zhang JC, Mo AC . Effect of surface microstructure of titanium implant on osteoblasts viability[J]. Int J Stomatol, 2007,34(3):207-209.
[15] Karoussis IK, Kyriakidou K, Psarros C , et al. Nd: YAG laser radiation (1.064 nm) accelerates diffe-rentiation of osteoblasts to osteocytes on smooth and rough titanium surfaces in vitro[J]. Clin Oral Im-plants Res, 2017,28(7):785-790.
doi: 10.1111/clr.2017.28.issue-7
[16] Li D, Liu B, Wu J , et al. Bone interface of dental implants cytologically influenced by a modified sandblasted surface: a preliminary in vitro study[J]. Implant Dent, 2001,10(2):132-138.
doi: 10.1097/00008505-200104000-00010
[17] Zinger O, Zhao G, Schwartz Z , et al. Differential regulation of osteoblasts by substrate microstructural features[J]. Biomaterials, 2005,26(14):1837-1847.
doi: 10.1016/j.biomaterials.2004.06.035 pmid: 15576158
[18] Le Guéhennec L, Soueidan A, Layrolle P , et al. Surface treatments of titanium dental implants for rapid osseointegration[J]. Dent Mater, 2007,23(7):844-854.
doi: 10.1016/ pmid: 16904738
[19] Li D, Lu X, Lin H , et al. Chitosan/bovine serum albumin co-micropatterns on functionalized titanium surfaces and their effects on osteoblasts[J]. J Mater Sci Mater Med, 2013,24(2):489-502.
[20] 鲁雄, 冯波, 翁杰 , 等. 生物材料表面微纳结构对成骨相关细胞的影响[J]. 中国材料进展, 2013,32(10):611-622.
Lu X, Feng B, Weng J , et al. The effects of micro-and nano-structured biomaterial surfaces on osteo-genetic-related cells[J]. Mater Chin, 2013,32(10):611-622.
[21] Zwahr C, Günther D, Brinkmann T , et al. Laser sur-face pattering of titanium for improving the biolo-gical performance of dental implants[J]. Adv Healthc Mater, 2017,6(3). doi: 10.1002/adhm.201600858.
[22] Boyan BD, Lossdörfer S, Wang L , et al. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies[J]. Eur Cell Mater, 2003,6:22-27.
doi: 10.22203/eCM
[23] Olivares-Navarrete R, Raz P, Zhao G , et al. Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates[J]. Proc Natl Acad Sci U S A, 2008,105(41):15767-15772.
doi: 10.1073/pnas.0805420105
[24] Moerke C, Mueller P, Nebe B , Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts[J]. Biomaterials, 2016,76:102-114.
doi: 10.1016/j.biomaterials.2015.10.030 pmid: 5063751
[25] Schwartz Z, Olivares-Navarrete R, Wieland M , et al. Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on micros-tructured titanium surfaces[J]. Biomaterials, 2009,30(20):3390-3396.
doi: 10.1016/j.biomaterials.2009.03.047
[26] Lohmann CH, Bonewald LF, Sisk MA , et al. Matu-ration state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvi-tamin D3[J]. J Bone Miner Res, 2000,15(6):1169-1180.
doi: 10.1359/jbmr.2000.15.6.1169
[27] Schwartz Z, Lohmann CH, Vocke AK , et al. Osteo-blast response to titanium surface roughness and 1alpha,25-(OH)2D3 is mediated through the mitogen-activated protein kinase (MAPK) pathway[J]. J Bio-med Mater Res, 2001,56(3):417-426.
doi: 10.1002/(ISSN)1097-4636
[28] Dohan Ehrenfest DM, Vazquez L, Park YJ , et al. Identification card and codification of the chemical and morphological characteristics of 14 dental im-plant surfaces[J]. J Oral Implantol, 2011,37(5):525-542.
doi: 10.1563/AAID-JOI-D-11-00080
[29] Zhao LZ, Mei SL, Chu PK , et al. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast func-tions[J]. Biomaterials, 2010,31(19):5072-5082.
doi: 10.1016/j.biomaterials.2010.03.014
[30] Kim MJ, Kim CW, Lim YJ , et al. Microrough ti-tanium surface affects biologic response in MG63 osteoblast-like cells[J]. J Biomed Mater Res A, 2006,79(4):1023-1032.
[31] 许嘉允, 邓飞龙, 庄秀妹 , 等. 纯钛微纳米复合形貌对成骨细胞生物学行为的影响[J]. 中华口腔医学研究杂志(电子版), 2015,9(6):21-26.
doi: 10.3877/cma.j.issn.1674-1366.2015.06.005
Xu JY, Deng FL, Zhuang XM , et al. The influence of different hybrid micro/nano hierarchical titanium topographies on osteoblast biological functions[J]. Chin J Stomatol Res (Electr Ed), 2015,9(6):21-26.
doi: 10.3877/cma.j.issn.1674-1366.2015.06.005
[32] Cecchinato F, Xue Y, Karlsson J , et al. In vitro evaluation of human fetal osteoblast response to magnesium loaded mesoporous TiO2 coating[J]. J Biomed Mater Res A, 2014,102(11):3862-3871.
doi: 10.1002/jbm.a.v102.11
[33] Zuo J, Huang XZ, Zhong XX , et al. A comparative study of the influence of three pure titanium plates with different micro- and nano-topographic surfaces on preosteoblast behaviors[J]. J Biomed Mater Res A, 2013,101(11):3278-3284.
[34] Webster TJ, Ejiofor JU , Increased osteoblast ad-hesion on nanophase metals: Ti, Ti6Al4V, and Co-CrMo[J]. Biomaterials, 2004,25(19):4731-4739.
doi: 10.1016/j.biomaterials.2003.12.002 pmid: 15120519
[35] Colon G, Ward BC, Webster TJ , Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2[J]. J Biomed Mater Res A, 2006,78(3):595-604.
[36] Tetè S, Mastrangelo F, Quaresima R , et al. Influence of novel nano-titanium implant surface on human osteoblast behavior and growth[J]. Implant Dent, 2010,19(6):520-531.
doi: 10.1097/ID.0b013e3182002eac pmid: 21119356
[37] Rodriguez Y, Baena R, Rizzo S , et al. Nanofeatured titanium surfaces for dental implantology: biological effects, biocompatibility, and safety[J]. J Nanomater, 2017,2017:1-18.
[38] Dalby MJ , McCloy D, Robertson M, et al. Osteo-progenitor response to defined topographies with nanoscale depths[J]. Biomaterials, 2006,27(8):1306-1315.
doi: 10.1016/j.biomaterials.2005.08.028 pmid: 16143393
[39] Zhao G, Zinger O, Schwartz Z , et al. Osteoblast-like cells are sensitive to submicron-scale surface struc-ture[J]. Clin Oral Implants Res, 2006,17(3):258-264.
doi: 10.1111/j.1600-0501.2005.01195.x pmid: 16672020
[40] Gittens RA , McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation[J]. Biomaterials, 2011,32(13):3395-3403.
doi: 10.1016/j.biomaterials.2011.01.029
[41] Huang QL, Elkhooly TA, Liu XJ , et al. Effects of hierarchical micro/nano-topographies on the mor-phology, proliferation and differentiation of osteo-blast-like cells[J]. Colloids Surf B Biointerfaces, 2016,145:37-45.
doi: 10.1016/j.colsurfb.2016.04.031
[42] Dalby MJ, Gadegaard N, Oreffo RO , Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate[J]. Nat Mater, 2014,13(6):558-569.
doi: 10.1038/nmat3980 pmid: 24845995
[43] You RC, Li X, Liu Y , et al. Response of filopodia and lamellipodia to surface topography on micropat-terned silk fibroin films[J]. J Biomed Mater Res A, 2014,102(12):4206-4212.
[44] Sowmiya M, Senthilkumar K , Adsorption of RGD tripeptide on anatase (001) surface—a first principle study[J]. Comput Mater Sci, 2015,104:124-129.
doi: 10.1016/j.commatsci.2015.03.040
[45] Gittens RA, Olivares-Navarrete R, Cheng A , et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells[J]. Acta Biomaterialia, 2013,9(4):6268-6277.
doi: 10.1016/j.actbio.2012.12.002
[46] Liu Q, Wang W, Zhang L , et al. Involvement of N- cadherin/β-catenin interaction in the micro/nano-topo-graphy induced indirect mechanotransduction[J]. Biomaterials, 2014,35(24):6206-6218.
doi: 10.1016/j.biomaterials.2014.04.068
[1] Yang Mengyao,Gao Xianling,Deng Shuli. Application of electrospun nanofibers in periodontal regeneration [J]. Int J Stomatol, 2023, 50(1): 10-18.
[2] Wang Yue,Wen Bing,Deng Mengting,Li Jianping. Research advances of low-level laser therapy on peri-implant tissue healing [J]. Int J Stomatol, 2021, 48(6): 725-730.
[3] Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340.
[4] Wang Jia,Li Wenxia,Yin Lihua. Restoration strategy of dental implant for impacted teeth in the edentulous area [J]. Int J Stomatol, 2021, 48(1): 77-81.
[5] Yuhao Liu,Quan Yuan,Shiwen Zhang. Recent research progress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting [J]. Inter J Stomatol, 2019, 46(2): 228-233.
[6] Pengfei Zhao,Qi Wang. Research progress on the etiology and therapy of bone defect during dental implantation under diabetic condition [J]. Inter J Stomatol, 2019, 46(2): 244-248.
[7] Xi Chen,Haiyang Yu. Research progress on polyetheretherketone in oral implantology and prosthodontics [J]. Inter J Stomatol, 2018, 45(6): 657-665.
[8] Lin Xiang,Huilu Chen,Ying Yuan,Qin Zhang,Na Xin,Ping. Gong. Research progress on calcitonin gene-related peptide on peripheral nerve, vascular regeneration and osseointegra-tion around implants [J]. Inter J Stomatol, 2018, 45(5): 509-515.
[9] Lin Yunfeng, Li Songhang. Research progress on application of DNA origami in stem cell field [J]. Inter J Stomatol, 2018, 45(3): 249-254.
[10] Wang Xiaona, Zhao Jinghui, Chu Shunli, Zhou Yanmin. Effect of bone substitutes in oral implants on bone formation [J]. Inter J Stomatol, 2016, 43(1): 113-.
[11] Zheng Xiaofei, You Zhiwei, Mo Anchun. Effect of non-steroidal anti-inflammatory drug on healing and remolding of peri-implant bones [J]. Inter J Stomatol, 2015, 42(2): 184-188.
[12] Fan Jian, Zou Gengsen, Chen Jiang. Immune response of the body to nanomodified titanium implant surfaces [J]. Inter J Stomatol, 2014, 41(6): 691-693.
[13] Zhuang Xiumei, Deng Feilong.. Effect and mechanism of titanium with nanoscale surface modification for osseointegration [J]. Inter J Stomatol, 2014, 41(4): 427-430.
[14] Li Yuanjing, Liu Wenjing, Yang Lan, Guo Lühua.. Research progress on Chinese herbs for bone reconstruction [J]. Inter J Stomatol, 2013, 40(4): 523-525.
[15] Liu Yuanyuan1, Li Guo1, Ren Jiayin1, Zhao Shuping1, Nie Jing2, Wang Hu1.. The osseointegration research of the interface between bone and implant coating by nano-scale titanium thin film [J]. Inter J Stomatol, 2012, 39(3): 312-316.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .