Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (5): 527-533.doi: 10.7518/gjkq.2018.05.006
• Implantology • Previous Articles Next Articles
Xingying Qi,Guoying Zheng,Lei. Sui()
CLC Number:
[1] |
Huang QL, Liu XJ, Yang X , et al. Specific heat treatment of selective laser melted Ti-6Al-4V for biomedical applications[J]. Front Mater Sci, 2015,9(4):373-381.
doi: 10.1007/s11706-015-0315-7 |
[2] | 王方辉, 张姗姗, 舒静媛 , 等. 纯钛种植体表面改性对骨结合的影响[J]. 中国组织工程研究, 2014,18(52):8491-8497. |
Wang FH, Zhang SS, Shu JY , et al. Effects of sur-face modification of titanium implants on the osseo-integration[J]. J Clin Rehabil Tissue Eng Res, 2014,18(52):8491-8497. | |
[3] | 陈西文, 朱智敏 . 纯钛在口腔修复中的应用[J]. 中国实用口腔科杂志, 2014,7(3):188-192. |
Chen XW, Zhu ZM . The application of titanium in prosthodontics[J]. Chin J Pract Stomatol, 2014,7(3):188-192. | |
[4] |
Wang MK, Chen T, Lu SH , et al. Osteogenic com-parison on selective laser melting printed and sand-blasting-acid-etching Ti substrates for customized implant applications[J]. Sci Adv Mater, 2017,9(5):705-714.
doi: 10.1166/sam.2017.3012 |
[5] |
Zahran R , RosalesLeal JI, RodríguezValverde MA, et al. Effect of hydrofluoric acid etching time on titanium topography, chemistry, wettability, and cell adhesion[J]. PLoS One, 2016,11(11):e0165296.
doi: 10.1371/journal.pone.0165296 |
[6] |
Manjaiah M, Laubscher RF , Effect of anodizing on surface integrity of Grade 4 titanium for biomedical applications[J]. Surf Coat Technol, 2017,313:425.
doi: 10.1016/j.surfcoat.2017.01.077 |
[7] |
Kaluđerović MR, Schreckenbach JP, Graf HL , Ti-tanium dental implant surfaces obtained by anodic spark deposition—from the past to the future[J]. Mater Sci Eng: C, 2016,69:1429-1441.
doi: 10.1016/j.msec.2016.07.068 |
[8] |
Meng HW, Chien EY, Chien HH , Dental implant bioactive surface modifications and their effects on osseointegration: a review[J]. Biomark Res, 2016,4(1):24.
doi: 10.1186/s40364-016-0078-z pmid: 5155396 |
[9] | Omar O, Karazisis D, Ballo A , et al. The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo[J]. Int J Nanomedicine, 2016,11:1367-1381. |
[10] |
Schwartz Z, Boyan BD , Underlying mechanisms at the bone-biomaterial interface[J]. J Cell Biochem, 1994,56(3):340-347.
doi: 10.1002/jcb.240560310 pmid: 7876327 |
[11] | Hacking SA, Tanzer M, Harvey EJ , et al. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings[J]. Clin Orthop Relat Res, 2002(405):24-38. |
[12] |
Mendonça G, Mendonça DB, Aragão FJ , et al. Advancing dental implant surface technology—from micron- to nano-topography[J]. Biomaterials, 2008,29(28):3822-3835.
doi: 10.1016/j.biomaterials.2008.05.012 pmid: 2020202020202020 |
[13] |
耿双双, 赵宝红 . 增强钛种植体表面亲水性能研究进展[J]. 中国实用口腔科杂志, 2016,9(6):368-372.
doi: 10.7504/kq.2016.06.012 |
Geng SS, Zhao BH . Research progress of hydrophi-licity enhancement of titanium implant surface[J]. Chin J Pract Stomatol, 2016,9(6):368-372.
doi: 10.7504/kq.2016.06.012 |
|
[14] | 张静超, 莫安春 . 钛种植体表面微结构对成骨细胞影响的研究进展[J]. 国际口腔医学杂志, 2007,34(3):207-209. |
Zhang JC, Mo AC . Effect of surface microstructure of titanium implant on osteoblasts viability[J]. Int J Stomatol, 2007,34(3):207-209. | |
[15] |
Karoussis IK, Kyriakidou K, Psarros C , et al. Nd: YAG laser radiation (1.064 nm) accelerates diffe-rentiation of osteoblasts to osteocytes on smooth and rough titanium surfaces in vitro[J]. Clin Oral Im-plants Res, 2017,28(7):785-790.
doi: 10.1111/clr.2017.28.issue-7 |
[16] |
Li D, Liu B, Wu J , et al. Bone interface of dental implants cytologically influenced by a modified sandblasted surface: a preliminary in vitro study[J]. Implant Dent, 2001,10(2):132-138.
doi: 10.1097/00008505-200104000-00010 |
[17] |
Zinger O, Zhao G, Schwartz Z , et al. Differential regulation of osteoblasts by substrate microstructural features[J]. Biomaterials, 2005,26(14):1837-1847.
doi: 10.1016/j.biomaterials.2004.06.035 pmid: 15576158 |
[18] |
Le Guéhennec L, Soueidan A, Layrolle P , et al. Surface treatments of titanium dental implants for rapid osseointegration[J]. Dent Mater, 2007,23(7):844-854.
doi: 10.1016/j.dental.2006.06.025 pmid: 16904738 |
[19] | Li D, Lu X, Lin H , et al. Chitosan/bovine serum albumin co-micropatterns on functionalized titanium surfaces and their effects on osteoblasts[J]. J Mater Sci Mater Med, 2013,24(2):489-502. |
[20] | 鲁雄, 冯波, 翁杰 , 等. 生物材料表面微纳结构对成骨相关细胞的影响[J]. 中国材料进展, 2013,32(10):611-622. |
Lu X, Feng B, Weng J , et al. The effects of micro-and nano-structured biomaterial surfaces on osteo-genetic-related cells[J]. Mater Chin, 2013,32(10):611-622. | |
[21] | Zwahr C, Günther D, Brinkmann T , et al. Laser sur-face pattering of titanium for improving the biolo-gical performance of dental implants[J]. Adv Healthc Mater, 2017,6(3). doi: 10.1002/adhm.201600858. |
[22] |
Boyan BD, Lossdörfer S, Wang L , et al. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies[J]. Eur Cell Mater, 2003,6:22-27.
doi: 10.22203/eCM |
[23] |
Olivares-Navarrete R, Raz P, Zhao G , et al. Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates[J]. Proc Natl Acad Sci U S A, 2008,105(41):15767-15772.
doi: 10.1073/pnas.0805420105 |
[24] |
Moerke C, Mueller P, Nebe B , Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts[J]. Biomaterials, 2016,76:102-114.
doi: 10.1016/j.biomaterials.2015.10.030 pmid: 5063751 |
[25] |
Schwartz Z, Olivares-Navarrete R, Wieland M , et al. Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on micros-tructured titanium surfaces[J]. Biomaterials, 2009,30(20):3390-3396.
doi: 10.1016/j.biomaterials.2009.03.047 |
[26] |
Lohmann CH, Bonewald LF, Sisk MA , et al. Matu-ration state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvi-tamin D3[J]. J Bone Miner Res, 2000,15(6):1169-1180.
doi: 10.1359/jbmr.2000.15.6.1169 |
[27] |
Schwartz Z, Lohmann CH, Vocke AK , et al. Osteo-blast response to titanium surface roughness and 1alpha,25-(OH)2D3 is mediated through the mitogen-activated protein kinase (MAPK) pathway[J]. J Bio-med Mater Res, 2001,56(3):417-426.
doi: 10.1002/(ISSN)1097-4636 |
[28] |
Dohan Ehrenfest DM, Vazquez L, Park YJ , et al. Identification card and codification of the chemical and morphological characteristics of 14 dental im-plant surfaces[J]. J Oral Implantol, 2011,37(5):525-542.
doi: 10.1563/AAID-JOI-D-11-00080 |
[29] |
Zhao LZ, Mei SL, Chu PK , et al. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast func-tions[J]. Biomaterials, 2010,31(19):5072-5082.
doi: 10.1016/j.biomaterials.2010.03.014 |
[30] | Kim MJ, Kim CW, Lim YJ , et al. Microrough ti-tanium surface affects biologic response in MG63 osteoblast-like cells[J]. J Biomed Mater Res A, 2006,79(4):1023-1032. |
[31] |
许嘉允, 邓飞龙, 庄秀妹 , 等. 纯钛微纳米复合形貌对成骨细胞生物学行为的影响[J]. 中华口腔医学研究杂志(电子版), 2015,9(6):21-26.
doi: 10.3877/cma.j.issn.1674-1366.2015.06.005 |
Xu JY, Deng FL, Zhuang XM , et al. The influence of different hybrid micro/nano hierarchical titanium topographies on osteoblast biological functions[J]. Chin J Stomatol Res (Electr Ed), 2015,9(6):21-26.
doi: 10.3877/cma.j.issn.1674-1366.2015.06.005 |
|
[32] |
Cecchinato F, Xue Y, Karlsson J , et al. In vitro evaluation of human fetal osteoblast response to magnesium loaded mesoporous TiO2 coating[J]. J Biomed Mater Res A, 2014,102(11):3862-3871.
doi: 10.1002/jbm.a.v102.11 |
[33] | Zuo J, Huang XZ, Zhong XX , et al. A comparative study of the influence of three pure titanium plates with different micro- and nano-topographic surfaces on preosteoblast behaviors[J]. J Biomed Mater Res A, 2013,101(11):3278-3284. |
[34] |
Webster TJ, Ejiofor JU , Increased osteoblast ad-hesion on nanophase metals: Ti, Ti6Al4V, and Co-CrMo[J]. Biomaterials, 2004,25(19):4731-4739.
doi: 10.1016/j.biomaterials.2003.12.002 pmid: 15120519 |
[35] | Colon G, Ward BC, Webster TJ , Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2[J]. J Biomed Mater Res A, 2006,78(3):595-604. |
[36] |
Tetè S, Mastrangelo F, Quaresima R , et al. Influence of novel nano-titanium implant surface on human osteoblast behavior and growth[J]. Implant Dent, 2010,19(6):520-531.
doi: 10.1097/ID.0b013e3182002eac pmid: 21119356 |
[37] | Rodriguez Y, Baena R, Rizzo S , et al. Nanofeatured titanium surfaces for dental implantology: biological effects, biocompatibility, and safety[J]. J Nanomater, 2017,2017:1-18. |
[38] |
Dalby MJ , McCloy D, Robertson M, et al. Osteo-progenitor response to defined topographies with nanoscale depths[J]. Biomaterials, 2006,27(8):1306-1315.
doi: 10.1016/j.biomaterials.2005.08.028 pmid: 16143393 |
[39] |
Zhao G, Zinger O, Schwartz Z , et al. Osteoblast-like cells are sensitive to submicron-scale surface struc-ture[J]. Clin Oral Implants Res, 2006,17(3):258-264.
doi: 10.1111/j.1600-0501.2005.01195.x pmid: 16672020 |
[40] |
Gittens RA , McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation[J]. Biomaterials, 2011,32(13):3395-3403.
doi: 10.1016/j.biomaterials.2011.01.029 |
[41] |
Huang QL, Elkhooly TA, Liu XJ , et al. Effects of hierarchical micro/nano-topographies on the mor-phology, proliferation and differentiation of osteo-blast-like cells[J]. Colloids Surf B Biointerfaces, 2016,145:37-45.
doi: 10.1016/j.colsurfb.2016.04.031 |
[42] |
Dalby MJ, Gadegaard N, Oreffo RO , Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate[J]. Nat Mater, 2014,13(6):558-569.
doi: 10.1038/nmat3980 pmid: 24845995 |
[43] | You RC, Li X, Liu Y , et al. Response of filopodia and lamellipodia to surface topography on micropat-terned silk fibroin films[J]. J Biomed Mater Res A, 2014,102(12):4206-4212. |
[44] |
Sowmiya M, Senthilkumar K , Adsorption of RGD tripeptide on anatase (001) surface—a first principle study[J]. Comput Mater Sci, 2015,104:124-129.
doi: 10.1016/j.commatsci.2015.03.040 |
[45] |
Gittens RA, Olivares-Navarrete R, Cheng A , et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells[J]. Acta Biomaterialia, 2013,9(4):6268-6277.
doi: 10.1016/j.actbio.2012.12.002 |
[46] |
Liu Q, Wang W, Zhang L , et al. Involvement of N- cadherin/β-catenin interaction in the micro/nano-topo-graphy induced indirect mechanotransduction[J]. Biomaterials, 2014,35(24):6206-6218.
doi: 10.1016/j.biomaterials.2014.04.068 |
[1] | Yang Mengyao,Gao Xianling,Deng Shuli. Application of electrospun nanofibers in periodontal regeneration [J]. Int J Stomatol, 2023, 50(1): 10-18. |
[2] | Wang Yue,Wen Bing,Deng Mengting,Li Jianping. Research advances of low-level laser therapy on peri-implant tissue healing [J]. Int J Stomatol, 2021, 48(6): 725-730. |
[3] | Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340. |
[4] | Wang Jia,Li Wenxia,Yin Lihua. Restoration strategy of dental implant for impacted teeth in the edentulous area [J]. Int J Stomatol, 2021, 48(1): 77-81. |
[5] | Yuhao Liu,Quan Yuan,Shiwen Zhang. Recent research progress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting [J]. Inter J Stomatol, 2019, 46(2): 228-233. |
[6] | Pengfei Zhao,Qi Wang. Research progress on the etiology and therapy of bone defect during dental implantation under diabetic condition [J]. Inter J Stomatol, 2019, 46(2): 244-248. |
[7] | Xi Chen,Haiyang Yu. Research progress on polyetheretherketone in oral implantology and prosthodontics [J]. Inter J Stomatol, 2018, 45(6): 657-665. |
[8] | Lin Xiang,Huilu Chen,Ying Yuan,Qin Zhang,Na Xin,Ping. Gong. Research progress on calcitonin gene-related peptide on peripheral nerve, vascular regeneration and osseointegra-tion around implants [J]. Inter J Stomatol, 2018, 45(5): 509-515. |
[9] | Lin Yunfeng, Li Songhang. Research progress on application of DNA origami in stem cell field [J]. Inter J Stomatol, 2018, 45(3): 249-254. |
[10] | Wang Xiaona, Zhao Jinghui, Chu Shunli, Zhou Yanmin. Effect of bone substitutes in oral implants on bone formation [J]. Inter J Stomatol, 2016, 43(1): 113-. |
[11] | Zheng Xiaofei, You Zhiwei, Mo Anchun. Effect of non-steroidal anti-inflammatory drug on healing and remolding of peri-implant bones [J]. Inter J Stomatol, 2015, 42(2): 184-188. |
[12] | Fan Jian, Zou Gengsen, Chen Jiang. Immune response of the body to nanomodified titanium implant surfaces [J]. Inter J Stomatol, 2014, 41(6): 691-693. |
[13] | Zhuang Xiumei, Deng Feilong.. Effect and mechanism of titanium with nanoscale surface modification for osseointegration [J]. Inter J Stomatol, 2014, 41(4): 427-430. |
[14] | Li Yuanjing, Liu Wenjing, Yang Lan, Guo Lühua.. Research progress on Chinese herbs for bone reconstruction [J]. Inter J Stomatol, 2013, 40(4): 523-525. |
[15] | Liu Yuanyuan1, Li Guo1, Ren Jiayin1, Zhao Shuping1, Nie Jing2, Wang Hu1.. The osseointegration research of the interface between bone and implant coating by nano-scale titanium thin film [J]. Inter J Stomatol, 2012, 39(3): 312-316. |