Int J Stomatol ›› 2021, Vol. 48 ›› Issue (6): 725-730.doi: 10.7518/gjkq.2021096

• Reviews • Previous Articles     Next Articles

Research advances of low-level laser therapy on peri-implant tissue healing

Wang Yue(),Wen Bing(),Deng Mengting,Li Jianping   

  1. Dept. of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
  • Received:2021-01-15 Revised:2021-06-22 Online:2021-11-01 Published:2021-10-28
  • Contact: Bing Wen E-mail:511354558@qq.com;kenwb@126.com
  • Supported by:
    National Natural Science Foundation of China(82060208)

Abstract:

Low-level laser therapy (LLLT) is a kind of therapy that can use biological stimulation of the low-level laser to promote cell healing. In the field of oral implants, low-level lasers promote osseointegration of implants, enhance soft tissue healing, inhibit inflammation and reduce post-operative adverse reactions. This review mainly introduced the mechanism and clinical application of LLLT on peri-implant tissue, aiming to lay a foundation for further clinical application.

Key words: low energy laser treatment, dental implant, osseointegration, soft tissue healing, biomodulation

CLC Number: 

  • R782.1

TrendMD: 
[1] Luke AM, Mathew S, Altawash MM, et al. Lasers: a review with their applications in oral medicine[J]. J Lasers Med Sci, 2019, 10(4):324-329.
doi: 10.15171/jlms.2019.52
[2] Mester A, Mester A. The history of photobiomodulation: endre mester (1903-1984)[J]. Photomed Laser Surg, 2017, 35(8):393-394.
doi: 10.1089/pho.2017.4332
[3] Kalhori KAM, Vahdatinia F, Jamalpour MR, et al. Photobiomodulation in oral medicine[J]. Photobiomodul Photomed Laser Surg, 2019, 37(12):837-861.
doi: 10.1089/photob.2019.4706
[4] Schindl A, Schindl M, Pernerstorfer-Schön H, et al. Low-intensity laser therapy: a review[J]. J Investig Med, 2000, 48(5):312-326.
[5] Passarella S, Karu T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation[J]. J Photochem Photobiol B, 2014, 140:344-358.
doi: 10.1016/j.jphotobiol.2014.07.021
[6] Lima PLV, Pereira CV, Nissanka N, et al. Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase[J]. J Photochem Photobiol B, 2019, 194:71-75.
doi: 10.1016/j.jphotobiol.2019.03.015
[7] Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation[J]. Photochem Photobiol, 2018, 94(2):199-212.
doi: 10.1111/php.2018.94.issue-2
[8] Tam SY, Tam VCW, Ramkumar S, et al. Review on the cellular mechanisms of low-level laser therapy use in oncology[J]. Front Oncol, 2020, 10:1255.
doi: 10.3389/fonc.2020.01255
[9] Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing[J]. Nat Cell Biol, 2019, 21(1):18-24.
doi: 10.1038/s41556-018-0237-6 pmid: 30602767
[10] Ladiz MAR, Mirzaei A, Hendi SS, et al. Effect of photobiomodulation with 810 and 940 nm diode lasers on human gingival fibroblasts[J]. Dent Med Probl, 2020, 57(4):369-376.
doi: 10.17219/dmp/122688
[11] Ren C, McGrath C, Jin LJ , et al. Effect of diode low-level lasers on fibroblasts derived from human perio-dontal tissue: a systematic review of in vitro studies[J]. Lasers Med Sci, 2016, 31(7):1493-1510.
doi: 10.1007/s10103-016-2026-4
[12] Papadelli A, Kyriakidou K, Kotsakis GA, et al. Immunomodulatory effects of Nd: YAG (1 064 nm) and diode laser (810 nm) wavelengths to LPS-challen-ged human gingival fibroblasts[J]. Arch Oral Biol, 2021, 122:104982.
[13] Cardoso LM, Pansani TN, Hebling J, et al. Photobiomodulation of inflammatory-cytokine-related effects in a 3-D culture model with gingival fibroblasts[J]. Lasers Med Sci, 2020, 35(5):1205-1212.
doi: 10.1007/s10103-020-02974-8
[14] Chang B, Qiu H, Zhao H, et al. The effects of photobiomodulation on MC3T3-E1 cells via 630 nm and 810 nm light-emitting diode[J]. Med Sci Monit, 2019, 25:8744-8752.
doi: 10.12659/MSM.920396
[15] Ribeiro LNS, Monteiro PM, Barretto GD, et al. The effect of cigarette smoking and low-level laser irradiation in RANK/RANKL/OPG expression[J]. Braz Dent J, 2020, 31(1):57-62.
doi: 10.1590/0103-6440202002519
[16] Wang LY, Wu F, Liu C, et al. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition[J]. Lasers Med Sci, 2019, 34(1):169-178.
doi: 10.1007/s10103-018-2673-8
[17] Winter R, Dungel P, Reischies FMJ, et al. Photobiomodulation (PBM) promotes angiogenesis in-vitro and in chick embryo chorioallantoic membrane mo-del[J]. Sci Rep, 2018, 8(1):17080.
doi: 10.1038/s41598-017-18519-z
[18] Amaroli A, Ravera S, Baldini F, et al. Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation[J]. Lasers Med Sci, 2019, 34(3):495-504.
doi: 10.1007/s10103-018-2623-5
[19] Terena SML, Mesquita-Ferrari RA, de Siqueira A-raújo AM, et al. Photobiomodulation alters the viability of HUVECs cells[J]. Lasers Med Sci, 2021, 36(1):83-90.
doi: 10.1007/s10103-020-03016-z
[20] de Brito Sousa K, Rodrigues MFSD, de Souza Santos D, et al. Differential expression of inflammatory and anti-inflammatory mediators by M1 and M2 macrophages after photobiomodulation with red or infrared lasers[J]. Lasers Med Sci, 2020, 35(2):337-343.
doi: 10.1007/s10103-019-02817-1
[21] Palled V, Rao J, Singh RD, et al. Assessment of the healing of dental implant surgical site following low-level laser therapy using bioclinical parameters: an exploratory study[J]. J Oral Implantol, 2021, 47(3):230-235.
doi: 10.1563/aaid-joi-D-18-00316
[22] Ercan E, Ustaoğlu G, Tunali M. Low-level laser the-rapy in enhancing wound healing and preserving tissue thickness at free gingival graft donor sites: a randomized, controlled clinical study[J]. Photomed Laser Surg, 2017, 35(4):223-230.
doi: 10.1089/pho.2016.4163
[23] Mayer L, Gomes FV, de Oliveira MG, et al. Peri-implant osseointegration after low-level laser therapy: micro-computed tomography and resonance frequency analysis in an animal model[[J]. Lasers Med Sci, 2016, 31(9):1789-1795.
doi: 10.1007/s10103-016-2051-3
[24] Prados-Frutos JC, Rodríguez-Molinero J, Prados-Privado M, et al. Lack of clinical evidence on low-level laser therapy (LLLT) on dental titanium implant: a systematic review[J]. Lasers Med Sci, 2016, 31(2):383-392.
doi: 10.1007/s10103-015-1860-0
[25] Abdulghani AS, Elhag SB. Shortened dental arch as a solution for maxillary sinus proximity in dental implant restoration[J]. Clin Case Rep, 2017, 5(6):782-786.
doi: 10.1002/ccr3.923
[26] Huang H, Wu W, Hunziker E. The clinical significance of implant stability quotient (ISQ) measurements: a li-terature review[J]. J Oral Biol Craniofac Res, 2020, 10(4):629-638.
doi: 10.1016/j.jobcr.2020.07.004 pmid: 32983857
[27] Mohajerani H, Salehi AM, Tabeie F, et al. Can low-level laser and light-emitting diode enhance the stability of dental implants[J]. J Maxillofac Oral Surg, 2020, 19(2):302-306.
doi: 10.1007/s12663-019-01210-3
[28] Karaca IR, Ergun G, Ozturk DN. Is Low-level laser therapy and gaseous ozone application effective on osseointegration of immediately loaded implants[J]. Niger J Clin Pract, 2018, 21(6):703-710.
doi: 10.4103/njcp.njcp_82_17 pmid: 29888715
[29] Zayed SM, Hakim AAA. Clinical efficacy of photobiomodulation on dental implant osseointegration: a systematic review[J]. Saudi J Med Med Sci, 2020, 8(2):80-86.
[30] Matys J, Świder K, Grzech-Leśniak K, et al. Photobiomodulation by a 635 nm diode laser on peri-implant bone: primary and secondary stability and bone density analysis-a randomized clinical trial[J]. Biomed Res Int, 2019, 2019:2785302.
[31] Lobato RPB, Kinalski MA, Martins TM, et al. In-fluence of low-level laser therapy on implant stability in implants placed in fresh extraction sockets: a randomized clinical trial[J]. Clin Implant Dent Relat Res, 2020, 22(3):261-269.
doi: 10.1111/cid.2020.v22.3
[32] Santinoni CS, Neves APC, Almeida BFM, et al. Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization[J]. J Biomed Mater Res A, 2021, 109(6):849-858.
doi: 10.1002/jbm.v109.6
[33] Gulati P, Kumar M, Issar G, et al. Effect of low le-vel laser therapy on crestal bone levels around dental implants-a pilot study[J]. Clin Implant Dent Relat Res, 2020, 22(6):739-746.
doi: 10.1111/cid.2020.v22.6
[34] Monea A, Beresescu G, Boeriu S, et al. Bone hea-ling after low-level laser application in extraction sockets grafted with allograft material and covered with a resorbable collagen dressing: a pilot histolo-gical evaluation[J]. BMC Oral Health, 2015, 15:134.
doi: 10.1186/s12903-015-0122-7
[35] de Oliveira GJPL, Aroni MAT, Pinotti FE, et al. Low-level laser therapy (LLLT) in sites grafted with osteoconductive bone substitutes improves osseointegration[J]. Lasers Med Sci, 2020, 35(7):1519-1529.
doi: 10.1007/s10103-019-02943-w
[36] 任刚, 刘毅, 李荣华, 等. 低能量激光治疗对临床患者种植体周围炎的疗效研究[J]. 国际生物医学工程杂志, 2018, 41(5):439-442.
Ren G, Liu Y, Li RH, et al. Effect of low energy laser therapy on peri-implantitis in clinical patients[J]. Int J Biomedl Eng, 2018, 41(5):439-442.
[37] 赵燕娟, 李荣华, 任刚, 等. 低能量激光联合牙周基础治疗对种植体周围炎龈沟液中IL-8、b-FGF及IL-1β水平的影响[J]. 国际生物医学工程杂志, 2019, 42(2):130-133.
Zhao YJ, Li RH, Ren G, et al. Effect of low level laser treatment combined with periodontal initial therapy on IL-8, b-FGF and IL-1β content in gingival crevicular fluid on peri-implantitis[J]. Int J Biomed Eng, 2019, 42(2):130-133.
[38] Ozturan S, Sirali A, Sur H. Effects of Nd: YAG laser irradiation for minimizing edema and pain after sinus lift surgery: randomized controlled clinical trial[J]. Photomed Laser Surg, 2015, 33(4):193-199.
doi: 10.1089/pho.2014.3823 pmid: 25764523
[39] Maldaner DR, Azzolin VF, Barbisan F, et al. In vitro effect of low-level laser therapy on the proliferative, apoptosis modulation, and oxi-inflammatory mar-kers of premature-senescent hydrogen peroxide-induced dermal fibroblasts[J]. Lasers Med Sci, 2019, 34(7):1333-1343.
doi: 10.1007/s10103-019-02728-1
[1] Han Chong,He Dongning,Yu Feiyan,Wu Dongchao. Research progress on the mechanism and treatment of pain after oral implants [J]. Int J Stomatol, 2024, 51(1): 99-106.
[2] Liao Honglin,Fang Zhonghan,Zhang Yanyan,Liu Fei,Shen Jiefei.. Diagnosis and treatment of post-traumatic trigeminal neuropathic pain after dental implantation [J]. Int J Stomatol, 2023, 50(6): 729-738.
[3] Gong Jiaming,Zhao Ruimin,Pan Hongwei,Lang Xin,Yu Zhanhai,Li Jianxue. Meta-analysis of dynamic navigation versus static navigation in the accuracy of implant surgery [J]. Int J Stomatol, 2023, 50(5): 538-551.
[4] Zhu Keshi,Liao Anqi,Yu Youcheng.. Research progress on the application of machine learning in dental implantology [J]. Int J Stomatol, 2023, 50(4): 491-498.
[5] Lu Qian,Xia Haibin,Wang Min.. Research progress on implantoplasty in the treatment of peri-implantitis [J]. Int J Stomatol, 2023, 50(2): 152-158.
[6] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[7] Chen Xiaoli,Zhang Fan,Liu Chengcheng. Application progress on photobiomodulation in the prevention and treatment of oral complications after radiothe-rapy [J]. Int J Stomatol, 2022, 49(6): 707-716.
[8] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[9] Zhu Xuanzhi,Zhao Lei. Research progress on the relationship between hypothyroidism and periodontitis [J]. Int J Stomatol, 2021, 48(4): 380-384.
[10] Feng Lu,Meng Wenxia. Research progress on the problems of dental implant treatment in patients with common oral mucosal disease [J]. Int J Stomatol, 2021, 48(2): 147-155.
[11] Wang Jia,Li Wenxia,Yin Lihua. Restoration strategy of dental implant for impacted teeth in the edentulous area [J]. Int J Stomatol, 2021, 48(1): 77-81.
[12] Wu Jielin,Gao Ying. Application progress on free soft-tissue grafts harvested from palatal mucosa [J]. Int J Stomatol, 2020, 47(6): 686-692.
[13] Xiao Yuhan,Yu Haiyang. Interproximal open contacts between implant restorations and adjacent teeth [J]. Int J Stomatol, 2020, 47(2): 202-205.
[14] Yu Wanqi,Zhou Yanmin,Zhao Jinghui. Research status of new materials in dental implants [J]. Int J Stomatol, 2019, 46(4): 488-496.
[15] Meijie Wang,Xin Tan,Yuwei Zhao,Haiyang Yu. Influences of immediat implant or traditional implant on postoperative pain [J]. Int J Stomatol, 2019, 46(3): 292-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .