Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (2): 204-208.doi: 10.7518/gjkq.2017.02.018

• Reviews • Previous Articles     Next Articles

Advances in periodontal regeneration with periodontal ligament cell sheet technique

Jiang Yuxi, Liu Shutai   

  1. 1. School of Stomatology, Binzhou Medical University, Yantai 264000, China;
    2. Dept. of Periodontics, Yantai Stomatological Hospital, Yantai 264000, China
  • Received:2016-01-31 Online:2017-03-01 Published:2017-03-01

Abstract: Achieving complete periodontal tissue regeneration that arises from periodontitis show some difficulties. The principles of guided tissue regeneration indicate that cell sheet engineering aims to achieve the regeneration of periodontal ligament embedded in new cementum and new alveolar bone by several novel cell-transferring Methods. For example, UpCell culture dish can control cell-surface adhesion and utilize temperature change in cell culture and a surface-grafted temperature-sensitive polymer named poly N-isopropylacylamide. Cell sheets have been harvested from temperature-sensitive culture surfaces non-invasively and overlaid as multilayered constructs. Cell sheet technique has improved in recent years and has overcome many obstacles, such as the inadequate thickness of monolayer cell sheet, the insufficient vascularization, and the lack of autologous cell sources. Owing to the high metabolic turnover rates of the periodontal ligament, many researchers have considered periodontal ligament cells as one of the most suitable candidate cell sources for regeneration. A clinical study of periodontal regeneration with autologous periodontal ligament cell sheet has been recently performed on humans in Japan. This article reviews the recent advances of techniques in periodontal ligament cell sheet engineering and its application in periodontal regeneration.

Key words: cell sheet technique, periodontal ligament cell, UpCell culture dish, decellularization, periodontal regeneration

CLC Number: 

  • Q813.1

TrendMD: 
[1] Bartold PM, Gronthos S, Ivanovski S, et al. Tissue engineered periodontal products[J]. J Periodont Res, 2016, 51(1):1-15.
[2] Matsuura K, Utoh R, Nagase K, et al. Cell sheet approach for tissue engineering and regenerative medicine[J]. J Control Release, 2014, 190:228-239.
[3] Iwata T, Washio K, Yoshida T, et al. Cell sheet en-gineering and its application for periodontal rege-neration[J]. J Tissue Eng Regen Med, 2015, 9(4): 343-356.
[4] Kim CS, Um YJ, Chai JK, et al. A canine model for histometric evaluation of periodontal regeneration[J]. Periodontol 2000, 2011, 56(1):209-226.
[5] Jönsson D, Nebel D, Bratthall G, et al. The human periodontal ligament cell: a fibroblast-like cell acting as an immune cell[J]. J Periodont Res, 2011, 46(2): 153-157.
[6] Dan H, Vaquette C, Fisher AG, et al. The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets[J]. Biomaterials, 2014, 35(1): 113-122.
[7] Tsumanuma Y, Iwata T, Washio K, et al. Com-parison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model[J]. Biomaterials, 2011, 32(25):5819-5825.
[8] Vaquette C, Fan W, Xiao Y, et al. A biphasic scaf-fold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/perio-dontal ligament complex[J]. Biomaterials, 2012, 33 (22):5560-5573.
[9] Costa PF, Vaquette C, Zhang Q, et al. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure[J]. J Clin Periodontol, 2014, 41(3):283-294.
[10] Nagai N, Hirakawa A, Otani N, et al. Development of tissue-engineered human periodontal ligament constructs with intrinsic angiogenic potential[J]. Cells Tissues Organs, 2009, 190(6):303-312.
[11] Haraguchi Y, Shimizu T, Sasagawa T, et al. Fabrica-tion of functional three-dimensional tissues by stac-king cell sheets in vitro [J]. Nat Protoc, 2012, 7(5): 850-858.
[12] Farag A, Vaquette C, Theodoropoulos C, et al. De-cellularized periodontal ligament cell sheets with recellularization potential[J]. J Dent Res, 2014, 93 (12):1313-1319.
[13] Wei F, Qu C, Song T, et al. Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity[J]. J Cell Physiol, 2012, 227(9):3216-3224.
[14] Wei F, Song T, Ding G, et al. Functional tooth re-storation by allogeneic mesenchymal stem cell-based bio-root regeneration in swine[J]. Stem Cells Dev, 2013, 22(12):1752-1762.
[15] Zhao YH, Zhang M, Liu NX, et al. The combined use of cell sheet fragments of periodontal ligament stem cells and platelet-rich fibrin granules for avu-lsed tooth reimplantation[J]. Biomaterials, 2013, 34 (22):5506-5520.
[16] Yan XZ, Both SK, Yang PS, et al. Human perio-dontal ligament derived progenitor cells: effect of STRO-1 cell sorting and Wnt3a treatment on cell behavior[J]. Biomed Res Int, 2014, 2014:145423.
[17] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4):315-317.
[18] Izumi Y, Aoki A, Yamada Y, et al. Current and fu-ture periodontal tissue engineering[J]. Periodontol 2000, 2011, 56(1):166-187.
[19] Iwata T, Yamato M, Zhang Z, et al. Validation of human periodontal ligament-derived cells as a re-liable source for cytotherapeutic use[J]. J Clin Perio-dontol, 2010, 37(12):1088-1099.
[20] Guo S, Guo W, Ding Y, et al. Comparative study of human dental follicle cell sheets and periodontal ligament cell sheets for periodontal tissue regenera-tion[J]. Cell Transplant, 2013, 22(6):1061-1073.
[21] Okuda K, Yamamiya K, Kawase T, et al. Treatment of human infrabony periodontal defects by grafting human cultured periosteum sheets combined with platelet-rich plasma and porous hydroxyapatite granules: case series[J]. J Int Acad Periodontol, 2009, 11(3):206-213.
[22] Murakami S. Periodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor(FGF-2) have in periodontal therapy [J]. Periodontol 2000, 2011, 56(1):188-208.
[23] Yoshida T, Washio K, Iwata T, et al. Current status and future development of cell transplantation the-rapy for periodontal tissue regeneration[J]. Int J Dent, 2012, 2012:307024.
[24] Wang J, Zhang R, Shen Y, et al. Recent advances in cell sheet technology for periodontal regeneration[J]. Curr Stem Cell Res Ther, 2014, 9(3):162-173.
[1] Yang Mengyao,Gao Xianling,Deng Shuli. Application of electrospun nanofibers in periodontal regeneration [J]. Int J Stomatol, 2023, 50(1): 10-18.
[2] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[3] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[4] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[5] Wang Shiqi,Chang Yaqin,Chen Bin,Tan Baochun,Ni Yanhong. Comparison of clinical outcomes between using bone graft alone and the combination of bone graft with membrane for periodontal regeneration therapy: a systematic review and Meta-analysis [J]. Int J Stomatol, 2020, 47(6): 644-651.
[6] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[7] Wang Runting,Fang Fuchun. Progress in research of non-coding RNAs in osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(2): 138-145.
[8] Wu Xiaonan,Ma Ning,Hou Jianxia. Research progress of exosomes derived from different stem cells in periodontal regeneration [J]. Int J Stomatol, 2020, 47(2): 146-151.
[9] Hao Yilin, Fang Fuchun, Wu Buling. Functions of microRNA on the osteogenic differentiation of human periodontal ligament-derived cells [J]. Inter J Stomatol, 2018, 45(1): 46-49.
[10] Wu Dong, Bao Guanghui. Extracellular signal-regulated kinase 1/2 signal pathway regulates the osteogenic differentiation of periodontal ligament cells [J]. Inter J Stomatol, 2016, 43(3): 268-272.
[11] Wu Ziqiang, Tang Chunbo. Periostin and its biological function in periodontal ligament [J]. Inter J Stomatol, 2016, 43(2): 168-171.
[12] Xia Jiajia1, Wang Lan2, Zhang Yanzhen3.. Effects of high glucose on osteogenic differentiation of periodontal ligament cells in vitro [J]. Inter J Stomatol, 2015, 42(4): 415-419.
[13] Cheng Qun, Yang Minghua, Chen Bin, Liu Juan,Yan Fuhua. Effect of Er:YAG laser irradiation on the cell proliferation and migration of human periodontal ligament cells [J]. Inter J Stomatol, 2015, 42(2): 135-139.
[14] Zhang Yang, Wang Jun. Influence of milk on the periodontal ligament cell activity of avulsed teeth [J]. Inter J Stomatol, 2015, 42(1): 84-88.
[15] Liu Junyu1, Liu Yan2, Wang Yongyue3.. Alkaline phosphates activity of human periodontal ligament cells on the surface of porous titanium after alkali treatment [J]. Inter J Stomatol, 2015, 42(1): 12-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .