国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (2): 219-224.doi: 10.7518/gjkq.2020011
摘要:
作为一种新颖的智能响应型生物材料,形状记忆高分子材料(SMP)已用于骨缺损修复研究。该类材料可在温度、水分等外界刺激下发生“初始态”与“临时态”之间的三维形状转变,可紧密充填骨缺损,改善了常规植入材料形状不匹配、植入难度大等缺点。此外,该类材料改性后可作为多孔性骨组织工程支架,用以装载各类生物活性因子及干细胞,促进缺损处新骨形成。SMP已在微创性、修复不规则骨缺损、促进骨缺损再生等方面展现出良好前景。本文对其目前在骨缺损修复中的原理、效应、性能优化等研究进展作一综述。
中图分类号:
[1] | Dreifke MB, Ebraheim NA, Jayasuriya AC . Investi-gation of potential injectable polymeric biomaterials for bone regeneration[J]. J Biomed Mater Res A, 2013,101(8):2436-2447. |
[2] | Tang D, Tare RS, Yang LY , et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration[J]. Biomaterials, 2016,83:363-382. |
[3] | Zhang DW, George OJ, Petersen KM , et al. A bioactive ‘self-fitting’ shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects[J]. Acta Biomater, 2014,10(11):4597-4605. |
[4] | Fernandez-Yague MA, Abbah SA, McNamara L , et al. Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strate-gies[J]. Adv Drug Deliv Rev, 2015,84:1-29. |
[5] | 杨强, 彭江, 卢世璧 , 等. 骨髓基质干细胞与软骨脱细胞基质多孔支架异位构建组织工程化软骨的实验研究[J]. 中华骨科杂志, 2010,30(4):417-422. |
Yang Q, Peng J, Lu SB , et al. Fabrication a novel cartilage ECM-derived 3-D porous acellular matrix scafold and in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells[J]. Chin J Orthop, 2010,30(4):417-422. | |
[6] | 邱耿韬, 史占军, 赵亮 . 磷酸钙骨水泥在骨组织再生修复应用中的研究进展[J]. 中国矫形外科杂志, 2013,21(14):1406-1409. |
Qiu GT, Shi ZJ, Zhao L . Research progress of calcium phosphate cement in bone tissue regeneration and repair[J]. Orthop J China, 2013,21(14):1406-1409. | |
[7] | Sivashanmugam A, Arun Kumar R, Vishnu Priya M , et al. An overview of injectable polymeric hydrogels for tissue engineering[J]. Eur Polym J, 2015,72:543-565. |
[8] | Pina S, Oliveira JM, Reis RL . Natural-based nano-composites for bone tissue engineering and regene-rative medicine: a review[J]. Adv Mater Weinheim, 2015,27(7):1143-1169. |
[9] | Jahan K, Tabrizian M . Composite biopolymers for bone regeneration enhancement in bony defects[J]. Biomater Sci, 2016,4(1):25-39. |
[10] | 张文晶, 高长有 . 智能响应型聚合物微粒及其与细胞的相互作用[J]. 中国材料进展, 2012,31(5):19-30. |
Zhang WJ, Gao CY . Intelligent-responsive polymeric particles and their interactions with cells[J]. Mater China, 2012,31(5):19-30. | |
[11] | Kim DY, Kwon DY, Kwon JS , et al. Stimuli-respon-sive injectable in situ-forming hydrogels for rege-nerative medicines[J]. Polym Rev, 2015,55(3):407-452. |
[12] | Wu YB, Wang L, Zhao X , et al. Self-healing supra-molecular bioelastomers with shape memory pro-perty as a multifunctional platform for biomedical applications via modular assembly[J]. Biomaterials, 2016,104:18-31. |
[13] | Hasan SM, Nash LD, Maitland DJ . Porous shape memory polymers: design and applications[J]. J Polym Sci B Polym Phys, 2016,54(14):1300-1318. |
[14] | Chan BQ, Low ZW, Heng SJ , et al. Recent advances in shape memory soft materials for biomedical ap-plications[J]. ACS Appl Mater Interfaces, 2016,8(16):10070-10087. |
[15] | Hardy JG, Palma M, Wind SJ , et al. Responsive bio-materials: advances in materials based on shape-memory polymers[J]. Adv Mater Weinheim, 2016,28(27):5717-5724. |
[16] | Kai D, Prabhakaran MP, Chan BQ , et al. Elastic poly(ε-caprolactone)-polydimethylsiloxane copo-lymer fibers with shape memory effect for bone tissue engineering[J]. Biomed Mater, 2016,11(1):015007. |
[17] | Rychter P, Pamula E, Orchel A , et al. Scaffolds with shape memory behavior for the treatment of large bone defects[J]. J Biomed Mater Res A, 2015,103(11):3503-3515. |
[18] | Xie MH, Wang L, Ge J , et al. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering[J]. ACS Appl Mater Interfaces, 2015,7(12):6772-6781. |
[19] | Bao M, Wang XL, Yuan HH , et al. HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing[J]. J Mater Chem B, 2016,4(31):5308-5320. |
[20] | Bao M, Lou XX, Zhou QH , et al. Electrospun bio-mimetic fibrous scaffold from shape memory poly-mer of PDLLA-co-TMC for bone tissue engineering[J]. ACS Appl Mater Interfaces, 2014,6(4):2611-2621. |
[21] | Liu X, Zhao K, Gong T , et al. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect[J]. Biomacromo-lecules, 2014,15(3):1019-1030. |
[22] | Correia CO, Leite ÁJ, Mano JF . Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties[J]. Carbohydr Polym, 2015,123:39-45. |
[23] | Baker RM, Tseng LF, Iannolo MT , et al. Self-deplo-ying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: a mouse fe-moral segmental defect study[J]. Biomaterials, 2016,76:388-398. |
[24] | Xie RQ, Hu JL, Hoffmann O , et al. Self-fitting shape memory polymer foam inducing bone regeneration: a rabbit femoral defect study[J]. Biochim Biophys Acta Gen Subj, 2018,1862(4):936-945. |
[25] | Neffe AT, Hanh BD, Steuer S , et al. Polymer networks combining controlled drug release, biodegradation, and shape memory capability[J]. Adv Mater, 2009,21(32/33):3394-3398. |
[26] | Lee EM, Smith K, Gall K , et al. Change in surface roughness by dynamic shape-memory acrylate net-works enhances osteoblast differentiation[J]. Bioma-terials, 2016,110:34-44. |
[27] | Erndt-Marino JD, Munoz-Pinto DJ, Samavedi S , et al. Evaluation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams[J]. ACS Biomater Sci Eng, 2015,1(12):1220-1230. |
[28] | Tseng LF, Wang J, Baker RM , et al. Osteogenic ca-pacity of human adipose-derived stem cells is preser-ved following triggering of shape memory scaf-folds[J]. Tissue Eng Part A, 2016,22(15/16):1026-1035. |
[29] | Hendrikson WJ, Rouwkema J, Clementi F , et al. Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells[J]. Biofa-brication, 2017,9(3):031001. |
[30] | Wei Z, Yang JH, Zhou JX , et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chem Soc Rev, 2014,43(23):8114-8131. |
[31] | Yang B, Zhang YL, Zhang XY , et al. Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier[J]. Polym Chem, 2012,3(12):3235-3238. |
[32] | Wang J, Brasch ME, Baker RM , et al. Shape memory activation can affect cell seeding of shape memory polymer scaffolds designed for tissue engineering and regenerative medicine[J]. J Mater Sci Mater Med, 2017,28(10):151. |
[33] | Ni PY, Ding QX, Fan M , et al. Injectable thermo-sensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects[J]. Biomaterials, 2014,35(1):236-248. |
[34] | Xiao H, Lu W, Le XX , et al. A multi-responsive hy-drogel with a triple shape memory effect based on reversible switches[J]. Chem Commun (Camb), 2016,52(90):13292-13295. |
[35] | Behl M, Razzaq MY, Lendlein A . Multifunctional shape-memory polymers[J]. Adv Mater, 2010,22(31):3388-3410. |
[36] | Jung YC, Cho JW . Application of shape memory polyurethane in orthodontic[J]. J Mater Sci Mater Med, 2010,21(10):2881-2886. |
[1] | 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746. |
[2] | 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358. |
[3] | 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203. |
[4] | 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744. |
[5] | 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70. |
[6] | 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94. |
[7] | 赵鹏飞,王琪. 伴糖尿病患者种植骨缺损的病因及治疗的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 244-248. |
[8] | 易芳,王斯任,褚衍昊,卢燕勤. 骨组织工程支架材料修复牙槽嵴裂的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 603-610. |
[9] | 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285. |
[10] | 梁馨予, 石佳博, 陈文川, 朱智敏. 硅酸镁锂在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 340-345. |
[11] | 张艺馨, 李磊. 磷酸钙支架-药物缓释体系在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 346-350. |
[12] | 汪洋, 申玉芹, 于文雯, 孙新华. 改良介孔生物活性玻璃在颌面部骨缺损修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 32-35. |
[13] | 张佳, 柳忠豪. 锶在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 50-54. |
[14] | 郑健茂 毛学理 凌均棨. 镁基支架及其在动物骨缺损修复中的应用[J]. 国际口腔医学杂志, 2015, 42(6): 720-723. |
[15] | 杨立明 陈淑萍 李小菊 谢春 武斌. Bio-oss应用于种植牙唇侧骨缺损的锥形束CT研究[J]. 国际口腔医学杂志, 2015, 42(4): 420-422. |
|