国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (1): 90-94.doi: 10.7518/gjkq.2020002

• 综述 • 上一篇    下一篇

生物活性玻璃/壳聚糖复合材料在生物医学领域的应用

邹俊东,刘定坤,杨楠,王谜,刘志辉()   

  1. 吉林大学口腔医院修复科 长春 130021
  • 收稿日期:2019-04-10 修回日期:2019-09-16 出版日期:2020-01-01 发布日期:2020-01-01
  • 通讯作者: 刘志辉
  • 作者简介:邹俊东,硕士,Email: cyclel@sina.com
  • 基金资助:
    吉林省科学技术厅重点科技研发项目(20180201056YY);吉林省科学技术厅重点科学技术成果转化项目(20180201056YY);长春市科学技术局长春市地院(校,所)合作专项(17DY024)

An overview of bioactive glasses/chitosan composites for biomedical applications

Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui()   

  1. Dept. of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
  • Received:2019-04-10 Revised:2019-09-16 Online:2020-01-01 Published:2020-01-01
  • Contact: Zhihui Liu
  • Supported by:
    This study was supported by Key Science and Technology Research and Development Project of Jilin Science and Technology Department(20180201056YY);Key Science and Technology Achievements Transformation Project of Jilin Provincial Science and Technology Department(20180201056YY);Changchun Science and Technology Bureau Changchun City Campus (School, Institute) Cooperation Special(17DY024)

摘要:

无机生物活性玻璃(BG)和天然壳聚糖(CS)均具有良好的生物学性能,被广泛应用于生物医学领域。近年研究发现二者组成的复合材料具有更好的机械性能和生物学性能,拥有巨大的发展潜力。本文在大量文献的基础上,简要介绍了BG和CS的物理和化学性质,主要论述了BG/CS复合材料在骨组织工程、药物及生物活性成分缓释和种植体表面修饰方面的应用现状,期望为该复合物的开发应用提供参考。

关键词: 生物活性玻璃, 壳聚糖, 骨组织工程, 缓释, 种植体修饰

Abstract:

Inorganic bioactive glass (BG) and natural chitosan (CS) are applied widely in biomedical fields due to their biological properties. Recent studies showed that compared with individual components, composites have optimised mechanical and biological properties, indicating their enormous potential for future development. This paper briefly introduces the physical and chemical properties of BG and CS and emphasises the recent studies on various applications of the BG/CS composites in bone tissue engineering, controlled release of drugs and molecules and implant dressing based on literature.

Key words: bioactive glass, chitosan, bone tissue engineering, controlled release, implant dressing

中图分类号: 

  • R318.08

表 1

骨密质、骨松质和BG、CS的机械性能比较"

材料类型 压缩强度/MPa 杨氏模量/MPa 孔隙率/%
骨密质 130~200 3 000~30 000 3~12
骨松质 0.1~20.0 20~26 940 50~90
BG(45S5 BG) 14~500 35 000~100 000 30~80
CS 0.005~89.480 35.50~88.98
[1] Sukaryo SG, Purnama A, Hermawan H . Structure and properties of biomaterials//Mahyudin F, Herma-wan H. Biomaterials and medical devices. Advanced structured materials[M].Switzerland: Springer, 2016(58):1-22.
[2] Ratner BD, Hoffman AS, Schoen FJ , et al.Biomate-rials science: an evolving,multidisciplinary endeavor[J]. Biomaterials Science, 2013:ⅩⅩⅤ-ⅩⅩⅩⅨ.
[3] Kargozar S, Baino F, Hamzehlou S , et al. Bioactive glasses entering the mainstream[J]. Drug Discov Today, 2018,23(10):1700-1704.
[4] Jones JR . Review of bioactive glass: from Hench to hybrids[J]. Acta Biomater, 2013,9(1):4457-4486.
[5] Miguez-Pacheco V, Hench LL, Boccaccini AR . Bio-active glasses beyond bone and teeth: emerging applications in contact with soft tissues[J]. Acta Bio-mater, 2015,13:1-15.
[6] Gerhardt LC, Boccaccini AR . Bioactive glass and glass-ceramic scaffolds for bone tissue engineering[J]. Materials (Basel), 2010,3(7):3867-3910.
[7] Soundrapandian C, Datta S, Kundu B , et al. Porous bioactive glass scaffolds for local drug delivery in osteomyelitis: development and in vitro characte-rization[J]. AAPS Pharm Sci Tech, 2010,11(4):1675-1683.
[8] Sahariah P, Másson M . Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship[J]. Biomacromolecules, 2017,18(11):3846-3868.
[9] Jayakumar R, Menon D, Manzoor K , et al. Biome-dical applications of chitin and chitosan based nano-materials—a short review[J]. Carbohydr Polym, 2010,82(2):227-232.
[10] Levengood SL, Zhang M . Chitosan-based scaffolds for bone tissue engineering[J]. J Mater Chem B, 2014,2(21):3161-3184.
[11] Moreira CDF, Carvalho SM, Sousa RG , et al. Nano-structured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injecta-ble matrix for bone tissue engineering[J]. Mater Chem Phys, 2018,31(6):1270-1277.
[12] Zeeshan R, Mutahir Z, Iqbal H , et al. Hydroxypro-pylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair[J]. Carbohydr Polym, 2018,193:9-18.
[13] Ciołek L, Biernat M, Jaegermann Z , et al. Control-ling the microstructure of lyophilized porous bio-composites by the addition of ZnO-doped bioglass[J]. Int J Appl Ceram Technol, 2017,14(6):1107-1116.
[14] Oftadeh R, Perez-Viloria M, Villa-Camacho JC , et al. Biomechanics and mechanobiology of trabecular bone: a review[J]. J Biomech Eng, 2015,137(1). doi: 10.1115/1.4029176.
[15] Karageorgiou V, Kaplan D . Porosity of 3D biomate-rial scaffolds and osteogenesis[J]. Biomaterials, 2005,26(27):5474-5491.
[16] Martins T, Oliveira AAR, Oliveira AC , et al. Novel 3D composites with highly flexible behavior based on chitosan and bioactive glass for biomedical app-lications[J]. Mater Chem Phy, 2017,189:1-11.
[17] Motealleh A, Eqtesadi S, Perera FH , et al. Understan-ding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds[J]. J Mech Behav Biomed Mater, 2016,64:253-261.
[18] Ur Rehman MA, Bastan FE, Nawaz Q , et al. Electro-phoretic deposition of lawsone loaded bioactive glass (BG)/chitosan composite on polyetherether-ketone (PEEK)/BG layers as antibacterial and bioa-ctive coating[J]. J Biomed Mater Res A, 2018,106(12):3111-3122.
[19] Khoshakhlagh P, Rabiee SM, Kiaee G , et al. Deve-lopment and characterization of a bioglass/chitosan composite as an injectable bone substitute[J]. Carbo-hydr Polym, 2017,157:1261-1271.
[20] Jia WT, Zhang X, Luo SH , et al. Novel borate glass/chitosan composite as a delivery vehicle for teico-planin in the treatment of chronic osteomyelitis[J]. Acta Biomater, 2010,6(3):812-819.
[21] Cai L, Lin D, Chai Y , et al. MBG scaffolds containing chitosan microspheres for binary delivery of IL-8 and BMP-2 for bone regeneration[J]. J Mater Chem B, 2018,6(27):4453-4465.
[22] Zhang J, Chen Y, Xu J , et al. Tissue engineering using 3D printed nano-bioactive glass loaded with NELL1 gene for repairing alveolar bone defects[J]. Regen Biomater, 2018,5(4):213-220.
[23] Mandracci P, Mussano F, Rivolo P , et al. Surface treatments and functional coatings for biocompati-bility improvement and bacterial adhesion reduction in dental implantology[J]. Coatings, 2016,6(1):7.
[24] Mokhtari H, Ghasemi Z, Kharaziha M , et al. Chi-tosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: structural and biological properties[J]. Appl Surf Sci, 2018,441:138-149.
[25] Avcu E, Yıldıran Avcu Y, Baştan FE , et al. Tailoring the surface characteristics of electrophoretically de-posited chitosan-based bioactive glass composite coatings on titanium implants via grit blasting[J]. Prog Org Coat, 2018,123:362-373.
[26] Seuss S, Lehmann M, Boccaccini AR . Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings[J]. Int J Mol Sci, 2014,15(7):12231-12242.
[27] Zhou T, Liu X, Sui B , et al. Development of fish collagen/bioactive glass/chitosan composite nanofi-bers as a GTR/GBR membrane for inducing perio-dontal tissue regeneration[J]. Biomed Mater, 2017,12(5):055004.
[28] Zhang J, Boyes V, Festy F , et al. In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan[J]. Dent Mater, 2018,34(8):1154-1167.
[29] Kim DA, Lee JH, Jun SK , et al. Sol-gel-derived bio-active glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced me-chanical and biomineralization properties[J]. Dent Mater, 2017,33(7):805-817.
[1] 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746.
[2] 王路明,曹潇,仵琳悦,李蕴聪,雷波,牛林. 掺锌生物活性玻璃纳米颗粒对复合树脂力学性能影响的实验研究[J]. 国际口腔医学杂志, 2022, 49(4): 404-411.
[3] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
[4] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[5] 易芳,王斯任,褚衍昊,卢燕勤. 骨组织工程支架材料修复牙槽嵴裂的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 603-610.
[6] 金鑫, 杨军星, 王英男, 刘志辉, 王博蔚. 海藻酸-壳聚糖微球的制备及其在生物医药领域的应用[J]. 国际口腔医学杂志, 2018, 45(4): 414-419.
[7] 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285.
[8] 梁馨予, 石佳博, 陈文川, 朱智敏. 硅酸镁锂在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 340-345.
[9] 张艺馨, 李磊. 磷酸钙支架-药物缓释体系在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 346-350.
[10] 汪洋, 申玉芹, 于文雯, 孙新华. 改良介孔生物活性玻璃在颌面部骨缺损修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 32-35.
[11] 张佳, 柳忠豪. 锶在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 50-54.
[12] 黄紫华, 武诗语, 麦穗. 促牙本质再矿化的生物活性树脂研究进展[J]. 国际口腔医学杂志, 2017, 44(4): 471-476.
[13] 郑健茂 毛学理 凌均棨. 镁基支架及其在动物骨缺损修复中的应用[J]. 国际口腔医学杂志, 2015, 42(6): 720-723.
[14] 李思敏1 郭良微1 周晋2 高云飞1. 富血小板血浆/藻酸盐缓释载体复合物修复骨缺损的实验研究[J]. 国际口腔医学杂志, 2014, 41(5): 546-551.
[15] 司家文1 郭礼和2 沈国芳1. 羊膜上皮细胞的生物学特性和骨向分化[J]. 国际口腔医学杂志, 2014, 41(5): 575-578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .