国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (5): 603-610.doi: 10.7518/gjkq.2018.05.018
Fang Yi,Siren Wang,Yanhao Chu,Yanqin. Lu()
摘要:
牙槽嵴裂是一种常见的颌面部发育畸形,传统的骨移植治疗存在骨量有限、术后易出现并发症等缺陷。骨组织工程修复骨缺损消除了自体骨移植的缺点,为牙槽嵴裂修复提供了新途径,成为当前的研究热点。骨组织工程研究的中心环节是支架材料,本文就骨组织工程支架及其修复牙槽嵴裂的研究状况作一综述。
中图分类号:
[1] |
Jabbari F, Hakelius MM, Thor AL , et al. Skoog pri-mary periosteoplasty versus secondary alveolar bone grafting in unilateral cleft lip and alveolus: long-term effects on alveolar bone formation and maxillary growth[J]. Plast Reconstr Surg, 2017,139(1):137-148.
doi: 10.1097/PRS.0000000000002910 |
[2] |
Chang CS, Wallace CG, Hsiao YC , et al. Difference in the surgical outcome of unilateral cleft lip and palate patients with and without pre-alveolar bone graft orthodontic treatment[J]. Sci Rep, 2016,6:23597.
doi: 10.1038/srep23597 |
[3] |
Aly LA, Hammouda N , Secondary closure of alveolar cleft with resorbable collagen membrane and a com-bination of intraoral autogenous bone graft and de-proteinized anorganic bovine bone[J]. Ann Maxillo-fac Surg, 2016,6(2):165.
doi: 10.4103/2231-0746.200351 |
[4] |
Friesenbichler J, Maurer-Ertl W, Bergovec M , et al. Clinical experience with the artificial bone graft sub-stitute Calcibon used following curettage of benign and low-grade malignant bone tumors[J]. Sci Rep, 2017,7(1):1736.
doi: 10.1038/s41598-017-02048-w |
[5] | Kaláb M, Karkoška J, Kamínek M , et al. Successful three-year outcome in a patient with allogenous ster-nal bone graft in the treatment of massive post-ster-notomy defects[J]. Int J Surg Case Rep, 2015,7C:6-9. |
[6] |
Takemaru M, Sakamoto Y, Sakamoto T , et al. Asse-ssment of bioabsorbable hydroxyapatite for secon-dary bone grafting in unilateral alveolar cleft[J]. J Plast Reconstr Aesthet Surg, 2016,69(4):493-496.
doi: 10.1016/j.bjps.2015.10.040 |
[7] |
Alonso N, Tanikawa DY, Freitas Rda S , et al. Eva-luation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients[J]. Tissue Eng Part C Methods, 2010,16(5):1183-1189.
doi: 10.1089/ten.tec.2009.0824 |
[8] |
Canan LW Jr, da Silva Freitas R, Alonso N , et al. Human bone morphogenetic protein-2 use for maxi-llary reconstruction in cleft lip and palate patients[J]. J Craniofac Surg, 2012,23(6):1627-1633.
doi: 10.1097/SCS.0b013e31825c75ba |
[9] |
Ekin O, Calis M, Aliyev A , et al. Poly(L-lactide)/poly (ε-caprolactone) and collagen/β-tricalcium phosphate scaffolds for the treatment of critical-sized rat alveo-lar defects: a microtomographic, molecular-biolo-gical, and histological study[J]. Cleft Palate Cranio-fac J, 2016,53(4):453-463.
doi: 10.1597/14-309 |
[10] |
Moreno M, Amaral MH, Lobo JM , et al. Scaffolds for bone regeneration: state of the art[J]. Curr Pharm Des, 2016,22(18):2726-2736.
doi: 10.2174/1381612822666160203114902 pmid: 26845128 |
[11] |
Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE , Scaffold design for bone regeneration[J]. J Nano-sci Nanotechnol, 2014,14(1):15-56.
doi: 10.1166/jnn.2014.9127 pmid: 24730250 |
[12] |
Bose S, Roy M, Bandyopadhyay A , Recent advances in bone tissue engineering scaffolds[J]. Trends Bio-technol, 2012,30(10):546-554.
doi: 10.1016/j.tibtech.2012.07.005 pmid: 22939815 |
[13] |
Lichte P, Pape HC, Pufe T , et al. Scaffolds for bone healing: concepts, materials and evidence[J]. Injury, 2011,42(6):569-573.
doi: 10.1016/j.injury.2011.03.033 pmid: 21489531 |
[14] |
Wong HM, Wu S, Chu PK , et al. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation[J]. Biomaterials, 2013,34(29):7016-7032.
doi: 10.1016/j.biomaterials.2013.05.062 pmid: 23787111 |
[15] |
Guvendiren M, Molde J, Soares RM , et al. Designing biomaterials for 3D printing[J]. ACS Biomater Sci Eng, 2016,2(10):1679-1693.
doi: 10.1021/acsbiomaterials.6b00121 pmid: 5181796 |
[16] |
Pang L, Hao W, Jiang M , et al. Bony defect repair in rabbit using hybrid rapid prototyping polylactic-co-glycolic acid/β-tricalciumphosphate collagen Ⅰ/apa-tite scaffold and bone marrow mesenchymal stem cells[J]. Indian J Orthop, 2013,47(4):388-394.
doi: 10.4103/0019-5413.114927 |
[17] |
Shafiee A, Atala A , Printing technologies for medi-cal applications[J]. Trends Mol Med, 2016,22(3):254-265.
doi: 10.1016/j.molmed.2016.01.003 pmid: 26856235 |
[18] |
Yu X, Tang X, Gohil SV , et al. Biomaterials for bone regenerative engineering[J]. Adv Healthc Mater, 2015,4(9):1268-1285.
doi: 10.1002/adhm.201400760 pmid: 25846250 |
[19] |
Tarafder S, Balla VK, Davies NM , et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J]. J Tissue Eng Regen Med, 2013,7(8):631-641.
doi: 10.1002/term.555 pmid: 4182013 |
[20] |
Wang L, Zhang B, Bao C , et al. Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs[J]. PLoS One, 2014,9(9):e107044.
doi: 10.1371/journal.pone.0107044 pmid: 25229501 |
[21] | Benlidayi ME, Tatli U, Kurkcu M , et al. Comparison of bovine-derived hydroxyapatite and autogenous bone for secondary alveolar bone grafting in patients with alveolar clefts[J]. J Oral Maxillofac Surg, 2012,70(1):e95-e102. |
[22] |
De Ruiter A, Janssen N, Van Es R , et al. Micro-structured beta-tricalcium phosphate for repair of the alveolar cleft in cleft lip and palate patients: a pilot study[J]. Cleft Palate Craniofac J, 2015,52(3):336-340.
doi: 10.1597/13-260 |
[23] |
Janssen NG, de Ruiter AP, van Hout WMMT , et al. Microstructured β-tricalcium phosphate putty versus autologous bone for repair of alveolar clefts in a goat model[J]. Cleft Palate Craniofac J, 2017,54(6):699-706.
doi: 10.1597/15-314 |
[24] |
Ezzat AE, El-Shenawy HM , Repair of cleft alveolar bone with bioactive glass material using Z-plasty flap[J]. Int J Appl Basic Med Res, 2015,5(3):211-213.
doi: 10.4103/2229-516X.165381 pmid: 4606585 |
[25] | Bandyopadhyay A, Petersen J, Fielding G , et al. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: influence on strength degradation, me-chanical properties, and in vitro bone-cell material interactions[J]. J Biomed Mater Res B Appl Bio-mater, 2012,100(8):2203-2212. |
[26] |
Fielding GA, Bandyopadhyay A, Bose S , Effects of silica and zinc oxide doping on mechanical and bio-logical properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dent Mater, 2012,28(2):113-122.
doi: 10.1016/j.dental.2011.09.010 |
[27] | 郭誉, 刘咏, 谭彦妮 , 等. 放电等离子烧结钛基磷酸三钙陶瓷复合材料的力学性能与生物活性[J]. 粉末冶金材料科学与工程, 2017,22(4):576-584. |
Guo Y, Liu Y, Tan YN , et al. Mechanical properties and bioactivity of spark plasma sintered titanium/tricalcium phosphate biocomposites[J]. Mater Sci Eng Powder Metall, 2017,22(4):576-584. | |
[28] |
Berger M, Probst F, Schwartz C , et al. A concept for scaffold-based tissue engineering in alveolar cleft osteoplasty[J]. J Craniomaxillofac Surg, 2015,43(6):830-836.
doi: 10.1016/j.jcms.2015.04.023 pmid: 26027868 |
[29] |
Matsui A, Matsui K, Handa T , et al. The regenerated bone quality by implantation of octacalcium phos-phate collagen composites in a canine alveolar cleft model[J]. Cleft Palate Craniofac J, 2014,51(4):420-430.
doi: 10.1597/12-096 |
[30] |
Pradel W, Tausche E, Gollogly J , et al. Spontaneous tooth eruption after alveolar cleft osteoplasty using tissue-engineered bone: a case report[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008,105(4):440-444.
doi: 10.1016/j.tripleo.2007.07.042 |
[31] |
Ceccarelli G, Presta R, Benedetti L , et al. Emerging perspectives in scaffold for tissue engineering in oral surgery[J]. Stem Cells Int, 2017,2017:4585401.
doi: 10.1155/2017/4585401 pmid: 28337223 |
[32] | 徐燕, 翟晓梅, 陆玉平 , 等. 复合牛骨在修复牙槽突裂中的应用[J]. 中国美容医学, 2015,24(8):27-29. |
Xu Y, Zhai XM, Lu YP , et al. Reconstruction of unilateral alveolar cleft with bovine bone complex graft[J]. Chin J Aesthet Med, 2015,24(8):27-29. | |
[33] |
Thuaksuban N, Nuntanaranont T, Pripatnanont P , A comparison of autogenous bone graft combined with deproteinized bovine bone and autogenous bone graft alone for treatment of alveolar cleft[J]. Int J Oral Maxillofac Surg, 2010,39(12):1175-1180.
doi: 10.1016/j.ijom.2010.07.008 |
[34] |
Tanataweethum N, Liu WC, Goebel WS , et al. Fa-brication of poly-L-lactic acid/dicalcium phosphate dihydrate composite scaffolds with high mechanical strength-implications for bone tissue engineering[J]. J Funct Biomater, 2015,6(4):1036-1053.
doi: 10.3390/jfb6041036 |
[35] |
Tanimoto K, Sumi K, Yoshioka M , et al. Experi-mental tooth movement into new bone area regenera-ted by use of bone marrow-derived mesenchymal stem cells[J]. Cleft Palate Craniofac J, 2015,52(4):386-394.
doi: 10.1597/12-232 |
[36] |
Zhang D, Chu F, Yang Y , et al. Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs[J]. Tissue Eng Part A, 2011,17(9/10):1313-1325.
doi: 10.1089/ten.tea.2010.0490 |
[37] |
Tokugawa Y, Kubota M, Nishimura M , et al. Bone regeneration of canine artificial alveolar clefts using bone-marrow-derived mesenchymal stromal cells and β-tricalcium phosphate: a preliminary study[J]. Orthodontic Waves, 2012,71(2):51-58.
doi: 10.1016/j.odw.2012.01.003 |
[38] |
Huang J, Tian B, Chu F , et al. Rapid maxillary ex-pansion in alveolar cleft repaired with a tissue-en-gineered bone in a canine model[J]. J Mech Behav Biomed Mater, 2015,48:86-99.
doi: 10.1016/j.jmbbm.2015.03.029 |
[39] |
Behnia H, Khojasteh A, Soleimani M , et al. Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: a preliminary report[J]. J Craniomaxillofac Surg, 2012,40(1):2-7.
doi: 10.1016/j.jcms.2011.02.003 |
[40] |
Korn P, Schulz MC, Range U , et al. Efficacy of tissue engineered bone grafts containing mesen-chymal stromal cells for cleft alveolar osteoplasty in a rat model[J]. J Craniomaxillofac Surg, 2014,42(7):1277-1285.
doi: 10.1016/j.jcms.2014.03.010 |
[41] |
Pourebrahim N, Hashemibeni B, Shahnaseri S , et al. A comparison of tissue-engineered bone from adi-pose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs[J]. Int J Oral Maxillofac Surg, 2013,42(5):562-568.
doi: 10.1016/j.ijom.2012.10.012 |
[42] | Jahanbin A, Rashed R, Alamdari DH , et al. Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells[J]. J Oral Maxillofac Surg, 2016, 74(4): 829. e1- 829. e9. |
[43] |
Stanko P, Mracna J, Stebel A , et al. Mesenchymal stem cells—a promising perspective in the orofacial cleft surgery[J]. Bratisl Lek Listy, 2013,114(2):50-52.
doi: 10.4149/BLL_2013_012 pmid: 23331197 |
[44] |
Yuanzheng C, Yan G, Ting L , et al. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture[J]. Plast Reconstr Surg, 2015,135(5):1405-1412.
doi: 10.1097/PRS.0000000000001166 |
[45] |
Behnia H, Khojasteh A, Soleimani M , et al. Secondary repair of alveolar clefts using human mesenchymal stem cells[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009,108(2):e1-e6.
doi: 10.1016/j.tripleo.2009.03.040 pmid: 19615638 |
[46] |
Pradel W, Lauer G , Tissue-engineered bone grafts for osteoplasty in patients with cleft alveolus[J]. Ann Anat, 2012,194(6):545-548.
doi: 10.1016/j.aanat.2012.06.002 pmid: 22776088 |
[47] |
Nguyen PD, Lin CD, Allori AC , et al. Scaffold-based rhBMP-2 therapy in a rat alveolar defect model: implications for human gingivoperiosteoplasty[J]. Plast Reconstr Surg, 2009,124(6):1829-1839.
doi: 10.1097/PRS.0b013e3181bf8024 |
[48] | 夏金圣 . 骨诱导活性材料修复牙槽突裂骨缺损的可行与可靠性[J]. 中国组织工程研究, 2015,19(47):7619-7623. |
Xia JS . Feasibility and reliability of osteoinduction active materials in repair of alveolar cleft defects[J]. J Clin Rehabil Tissue Eng Res, 2015,19(47):7619-7623. |
[1] | 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746. |
[2] | 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26. |
[3] | 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70. |
[4] | 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224. |
[5] | 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94. |
[6] | 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679. |
[7] | 李龙飚,汪成林,叶玲. 天然支架材料在牙髓组织工程再生中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 666-672. |
[8] | 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285. |
[9] | 梁馨予, 石佳博, 陈文川, 朱智敏. 硅酸镁锂在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 340-345. |
[10] | 张艺馨, 李磊. 磷酸钙支架-药物缓释体系在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 346-350. |
[11] | 张佳, 柳忠豪. 锶在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 50-54. |
[12] | 郑健茂 毛学理 凌均棨. 镁基支架及其在动物骨缺损修复中的应用[J]. 国际口腔医学杂志, 2015, 42(6): 720-723. |
[13] | 李蕾, 乔祥晨 崔彩云, 郭维华, 田卫东, . 光引发聚合改性明胶用于牙组织工程的可能性初探[J]. 国际口腔医学杂志, 2015, 42(3): 265-268. |
[14] | 郭天奇,周延民,赵静辉,储顺礼,孙千月,罗雯静,马珊珊. 富血小板血纤蛋白与其他生物材料联合用于牙周组织修复[J]. 国际口腔医学杂志, 2015, 42(2): 231-236. |
[15] | 司家文1 郭礼和2 沈国芳1. 羊膜上皮细胞的生物学特性和骨向分化[J]. 国际口腔医学杂志, 2014, 41(5): 575-578. |
|