国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (1): 50-54.doi: 10.7518/gjkq.2018.01.010
张佳, 柳忠豪
Zhang Jia, Liu Zhonghao
摘要: 骨替代材料被广泛应用于骨缺损的修复过程,在其基础上掺入促进骨修复的材料或因子是如今骨替代材料研究的主要热点。锶离子作为体内的一种必需微量元素能够同时刺激新骨形成并减少骨质吸收。近年来,众多学者将锶离子掺入各类骨替代材料中发现,锶的掺入不仅能改善骨替代材料的物理、化学性能,而且可以改变细胞行为,提高体内成骨能力。本文就以上几个方面对掺锶骨替代材料的研究情况进行综述。
中图分类号:
[1]Kotsakis GA, Salama M, Chrepa V, et al. A rando-mized, blinded, controlled clinical study of par-ticulate anorganic bovine bone mineral and calcium phosphosilicate putty bone substitutes for socket pre-servation[J]. Int J Oral Maxillofac Implants, 2014, 29(1):141-151. [2]Toloue SM, Chesnoiu-Matei I, Blanchard SB. A clinical and histomorphometric study of calcium sulfate compared with freeze-dried bone allograft for alveolar ridge preservation[J]. J Periodontol, 2012, 83(7):847-855. [3]Tal H. Autogenous masticatory mucosal grafts in extraction socket seal procedures: a comparison be-tween sockets grafted with demineralized freeze-dried bone and deproteinized bovine bone mineral[J]. Clin Oral Implants Res, 1999, 10(4):289-296. [4]Canalis E, Hott M, Deloffre P, et al. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro [J]. Bone, 1996, 18(6): 517-523. [5]Bonnelye E, Chabadel A, Saltel F, et al. Dual effect of strontium ranelate: stimulation of osteoblast dif-ferentiation and inhibition of osteoclast formation and resorption in vitro [J]. Bone, 2008, 42(1):129- 138. [6]Marie PJ. Strontium ranelate: new insights into its dual mode of action[J]. Bone, 2007, 40(5):S5-S8. [7]Baron R, Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation[J]. Eur J Pharmacol, 2002, 450(1):11- 17. [8]邱凯. 掺锶聚磷酸钙作为骨组织工程支架材料的研究[D]. 成都: 四川大学, 2005. Qiu K. Strontium doped calcium polyphosphate as scaffold material for bone tissue engineering[D]. Chengdu: Sichuan University, 2005. [9]Sekine K, Sakama M, Hamada K. Evaluation of strontium introduced apatite cement as the injectable bone substitute developments[J]. Conf Proc IEEE Eng Med Biol Soc, 2013, 2013:858-861. [10]黄强, 李程, 周宗科, 等. 掺锶硫酸钙复合骨修复材料的制备及体外特性研究[J]. 生物医学工程学杂志, 2009(3):575-579. Huang Q, Li C, Zhou ZK, et al. Preparation and in vitro characteristics of strontium doped calcium sulfate composite bone repair material[J]. J Biomed Eng, 2009(3):575-579. [11]Landi E, Tampieri A, Celotti G, et al. Sr-substituted hydroxyapatites for osteoporotic bone replacement [J]. Acta Biomater, 2007, 3(6):961-969. [12]Ni GX, Shu B, Huang G, et al. The effect of stron-tium incorporation into hydroxyapatites on their physical and biological properties[J]. J Biomed Mater Res B Appl Biomater, 2011, 100(2):562-568. [13]Pan HB, Li ZY, Lam WM, et al. Solubility of strontium-substituted apatite by solid titration[J]. Acta Biomater, 2009, 5(5):1678-1685. [14]赵彦涛, 侯树勋, 闫钧, 等. 掺锶冻干骨的制备方法[J]. 口腔医学研究, 2011, 27(1):9-11. Zhao YT, Hou SX, Yan J, et al. Preparation of stron-tium incorporated frozen dried bone[J]. J Oral Sci Res, 2011, 27(1):9-11. [15]Wu C, Fan W, Gelinsky M, et al. Bioactive SrO-SiO 2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties[J]. Acta Biomater, 2011, 7(4):1797-1806. [16]Qiu K, Zhao XJ, Wan CX, et al. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds[J]. Biomaterials, 2006, 27(8):1277-1286. [17]Rodrigues TL, Foster BL, Silverio KG, et al. Hypo-phosphatasia-associated deficiencies in mineraliza-tion and gene expression in cultured dental pulp cells obtained from human teeth[J]. J Endod, 2012, 38(7): 907-912. [18]Bhakta G, Rai B, Lim ZX, et al. Hyaluronic acid-based hydrogels functionalized with heparin that support controlled release of bioactive BMP-2[J]. Biomaterials, 2012, 33(26):6113-6122. [19]李伟, 黄强, 黄丹丹. 掺锶硫酸钙骨修复材料体外细胞相容性研究[J]. 成都医学院学报, 2013, 8:152- 155. Li W, Huang Q, Huang DD. The in vitro compati-bility study of strontium-calclum sulfate compounds as biocutive bone grafted substitute[J]. J Chengdu Med College, 2013, 8(2):152-155. [20]Sakai A, Valanezahad A, Ozaki M, et al. Preparation of Sr-containing carbonate apatite as a bone subs-titute and its properties[J]. Dent Mater J, 2012, 31 (2):197-205. [21]Zhang Y, Wei L, Chang J, et al. Strontium-incor-porated mesoporous bioactive glass scaffolds stimu-lating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects[J]. J Mater Chem B, 2013, 1(41):5711-5722. [22]Zhang W, Shen Y, Pan H, et al. Effects of strontium in modified biomaterials[J]. Acta Biomater, 2011, 7 (2):800-808. [23]Liu F, Zhang X, Yu X, et al. In vitro study in stimu-lating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering[J]. J Mater Sci Mater Med, 2011, 22(3):683-692. [24]彭红, 顾志鹏, 黄程程, 等. 掺锶聚磷酸钙共培养成骨细胞与内皮细胞: 行为和功能蛋白的变化[J]. 中国组织工程研究, 2014, 18(3):365-370. Peng H, Gu ZP, Huang CC, et al. Effects of stron-tium-doped calcium polyphosphate on behavior and angiogenic growth factors expression of co-cultured osteoblasts and endothelial cells[J]. Chin J Tissue Eng Res, 2014, 18(3):365-370. [25]Zhao S, Zhang J, Zhu M, et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects[J]. Acta Biomater, 2015, 12:270-280. [26]余喜讯, 陈元维, 史国齐, 等. 掺锶聚磷酸钙骨组织工程支架材料与成骨细胞及内皮细胞的相容性研究[J]. 中国组织工程研究与临床康复, 2007, 11 (15):857-860. Yu XX, Chen YW, Shi GQ, et al. Cytocompatibility of strontium-doped calcium polyphosphate tissue engineering materials to osteoblast and endothelial cells[J]. J Clin Rehab Tissue Eng Res, 2007, 11(15): 857-860. [27]余喜讯, 顾志鹏, 任大伟, 等. 新型骨科材料SCPP对成骨细胞促血管化生长因子表达影响的研究[J]. 四川大学学报(工程科学版), 2011, 43(1):219- 225. Yu XX, Gu ZP, Ren DW, et al. Study of the influence of SCPP on angiogenic growth factors expression of osteoblasts[J]. J Sichuan Univ (Eng Sci Ed), 2011, 43(1):219-225. [28]冯婷, 顾志鹏, 任大伟, 等. 掺锶聚磷酸钙对破骨细胞的影响[J]. 中国组织工程研究与临床康复, 2008, 12(1):19-22. Feng T, Gu ZP, Ren DW, et al. Effects of strontium-doped calcium polyphosphate on osteoclast[J]. J Clin Rehab Tissue Eng Res, 2008, 12(1):19-22. [29]Kaygili O, Keser S, Kom M, et al. Strontium subs-tituted hydroxyapatites: synthesis and determination of their structural properties, in vitro and in vivo performance[J]. Mater Sci Eng C Mater Biol Appl, 2015, 55:538-546. [30]Wong CT, Lu WW, Chan WK, et al. In vivo cancellous bone remodeling on a strontium-containing hydro-xyapatite (sr-HA) bioactive cement[J]. J Biomed Mater Res A, 2004, 68(3):513-521. [31]刘彪, 李运峰, 胡静. 含锶羟基磷灰石对骨质疏松症大鼠的影响[J]. 中国骨质疏松杂志, 2015, 21(5): 524-530. Liu B, Li YF, Hu J. The effect of strontium-containing hydroxyapatite implants in osteoporotic rats[J]. Chin J Osteoporos, 2015, 21(5):524-530. [32]Baier M, Staudt P, Klein R, et al. Strontium enhances osseointegration of calcium phosphate cement: a histomorphometric pilot study in ovariectomized rats [J]. J Orthop Surg Res, 2013, 8:16. [33]Newman SD, Lotfibakhshaiesh N, O’Donnell M, et al. Enhanced osseous implant fixation with stron-tium-substituted bioactive glass coating[J]. Tissue Eng Part A, 2014, 20(13/14):1850-1857. [34]Vestermark MT. Strontium in the bone-implant interface[J]. Dan Med Bull, 2011, 58(5):B2486. [35]Thormann U, Ray S, Sommer U, et al. Bone forma-tion induced by strontium modified calcium pho-sphate cement in critical-size metaphyseal fracture defects in ovariectomized rats[J]. Biomaterials, 2013, 34(34):8589-8598. [36]Wei L, Ke J, Prasadam I, et al. A comparative study of Sr-incorporated mesoporous bioactive glass scaf-folds for regeneration of osteopenic bone defects[J]. Osteoporos Int, 2014, 25(8):2089-2096. [37]Ren J, Blackwood KA, Doustgani A, et al. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration[J]. J Biomed Mater Res A, 2014, 102(9):3140-3153. [38]Zhang Y, Wei L, Wu C, et al. Periodontal regenera-tion using strontium-loaded mesoporous bioactive glass scaffolds in osteoporotic rats[J]. PLoS One, 2014, 9(8):e104527. |
[1] | 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115. |
[2] | 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746. |
[3] | 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358. |
[4] | 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203. |
[5] | 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744. |
[6] | 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70. |
[7] | 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224. |
[8] | 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94. |
[9] | 赵鹏飞,王琪. 伴糖尿病患者种植骨缺损的病因及治疗的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 244-248. |
[10] | 易芳,王斯任,褚衍昊,卢燕勤. 骨组织工程支架材料修复牙槽嵴裂的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 603-610. |
[11] | 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285. |
[12] | 梁馨予, 石佳博, 陈文川, 朱智敏. 硅酸镁锂在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 340-345. |
[13] | 张艺馨, 李磊. 磷酸钙支架-药物缓释体系在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 346-350. |
[14] | 汪洋, 申玉芹, 于文雯, 孙新华. 改良介孔生物活性玻璃在颌面部骨缺损修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 32-35. |
[15] | 王晓娜 赵静辉 储顺礼 周延民. 骨替代材料在口腔种植领域中的成骨效果[J]. 国际口腔医学杂志, 2016, 43(1): 113-. |
|