国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (3): 340-345.doi: 10.7518/gjkq.2018.03.018

• 综述 • 上一篇    下一篇

硅酸镁锂在骨组织工程中的研究进展

梁馨予, 石佳博, 陈文川, 朱智敏   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院修复1科 成都 610041
  • 收稿日期:2017-07-12 修回日期:2017-12-22 发布日期:2018-05-08
  • 通讯作者: 朱智敏,教授,博士,Email:zzhimin@163.com
  • 作者简介:梁馨予,博士,Email:1362171184@qq.com

Research progress on synthetic nanosilicates in bone tissue engineering

Liang Xinyu, Shi Jiabo, Chen Wenchuan, Zhu Zhimin   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics 1, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-07-12 Revised:2017-12-22 Published:2018-05-08

摘要: 硅酸镁锂是一种纳米黏土材料,因其具有的细胞水平大小、带电片晶结构和较高的表体积比,易与蛋白分子、细胞、聚合物交联。随着对硅酸镁锂研究的不断深入,近年来该材料已逐渐发展到骨组织工程领域。本文以硅酸镁锂的物理化学性质和生物学性质为基础,对骨组织工程中硅酸镁锂对种子细胞功能调控、生长因子递载以及基质材料改良的研究进展作一综述,以期为该材料在骨组织工程中的应用研究提供参考。

关键词: 硅酸镁锂, 骨组织工程, 成骨诱导, 载体, 基质材料, 硅酸镁锂, 骨组织工程, 成骨诱导, 载体, 基质材料

Abstract: Synthetic nanosilicates are clay nanoparticles that have a cellular-level size, distinct charged and layered structure, and high surface-to-volume ratio, which enhances their interactions with proteins, cells, and polymers. Recently, researchers have focused on the implications of using synthetic nanosilicates in bone tissue engineering to understand their physicochemical and biological properties. The scope of this review includes the well-established use of synthetic nanosilicates for the adjustment of cell functions during bone tissue engineering. The interactions of synthetic nanosilicates with growth factors enable controlled delivery, and their mechanical or biological properties are enhanced when they interact matrix materials. This review is useful to future studies on synthetic nanosilicates.

Key words: synthetic nanosilicates, bone tissue engineering, osteoinduction, carrier, matrix material, synthetic nanosilicates, bone tissue engineering, osteoinduction, carrier, matrix material

中图分类号: 

  • R783.1
[1] Nazirkar G, Singh S, Dole V, et al.Effortless effort in bone regeneration: a review[J]. J Int Oral Health, 2014, 6(3):120-124.
[2] Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE.Scaffold design for bone regeneration[J]. J Nanosci Nanotechnol, 2014, 14(1):15-56.
[3] Amini AR, Laurencin CT, Nukavarapu SP.Bone tissue engineering: recent advances and challenges[J]. Crit Rev Biomed Eng, 2012, 40(5):363-408.
[4] Alford AI, Kozloff KM, Hankenson KD.Extracellular matrix networks in bone remodeling[J]. Int J Biochem Cell Biol, 2015, 65:20-31.
[5] Gaharwar AK, Mihaila SM, Swami A, et al.Bioac-tive silicate nanoplatelets for osteogenic differentia-tion of human mesenchymal stem cells[J]. Adv Mater Weinheim, 2013, 25(24):3329-3336.
[6] Mihaila SM, Gaharwar AK, Reis RL, et al.The os-teogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets[J]. Biomaterials, 2014, 35(33):9087-9099.
[7] Chimene D, Alge DL, Gaharwar AK.Two-dimen-sional nanomaterials for biomedical applications: emerging trends and future prospects[J]. Adv Mater Weinheim, 2015, 27(45):7261-7284.
[8] Wegst UG, Bai H, Saiz E, et al.Bioinspired struc-tural materials[J]. Nat Mater, 2015, 14(1):23-36.
[9] Dawson JI, Oreffo RO.Clay: new opportunities for tissue regeneration and biomaterial design[J]. Adv Mater Weinheim, 2013, 25(30):4069-4086.
[10] Kerativitayanan P, Carrow JK, Gaharwar AK.Nano-materials for engineering stem cell responses[J]. Adv Healthc Mater, 2015, 4(11):1600-1627.
[11] Xu M, Liang T, Shi M, et al.Graphene-like two-dimensional materials[J]. Chem Rev, 2013, 113(5): 3766-3798.
[12] Cummins HZ.Liquid, glass, gel: the phases of co-lloidal laponite[J]. J Non-Cryst Sol, 2007, 353(41): 3891-3905.
[13] Mongondry P, Tassin JF, Nicolai T.Revised state diagram of laponite dispersions[J]. J Colloid Inter-face Sci, 2005, 283(2):397-405.
[14] Dawson JI, Kanczler JM, Yang XB, et al.Clay gels for the delivery of regenerative microenvironments[J]. Adv Mater Weinheim, 2011, 23(29):3304-3308.
[15] Campbell ID, Humphries MJ.Integrin structure, activation, and interactions[J]. Cold Spring Harb Perspect Biol, 2011, 3(3). doi:10.1101/cshperspect.a004994.
[16] Motskin M, Wright DM, Muller K, et al.Hydroxya-patite nano and microparticles: correlation of particle properties with cytotoxicity and biostability[J]. Bio-materials, 2009, 30(19):3307-3317.
[17] Park MVDZ, Annema W, Salvati A, et al.In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles[J]. Toxicol Appl Phar, 2009, 240(1):108-116.
[18] Napierska D, Thomassen LC, Rabolli V, et al.Size-dependent cytotoxicity of monodisperse silica nano-particles in human endothelial cells[J]. Small, 2009, 5(7):846-853.
[19] Gaharwar AK, Kishore V, Rivera C, et al.Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differen-tiation of human mesenchymal stem cells[J]. Ma-cromol Biosci, 2012, 12(6):779-793.
[20] Gaharwar AK, Schexnailder PJ, Kline BP, et al.As-sessment of using laponite cross-linked poly (ethy-lene oxide) for controlled cell adhesion and minera-lization[J]. Acta Biomater, 2011, 7(2):568-577.
[21] Wang C, Wang S, Li K, et al.Preparation of laponite bioceramics for potential bone tissue engineering applications[J]. PLoS One, 2014, 9(6):e99585.
[22] Chang CW, van Spreeuwel A, Zhang C, et al. PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold[J]. Soft Matter, 2010, 6(20):5157-5164.
[23] Gaharwar AK, Schexnailder P, Kaul V, et al.Highly extensible bio-nanocomposite films with direction-dependent properties[J]. MAdv Funct Mater, 2010(3): 429-436.
[24] Schexnailder PJ, Gaharwar AK, Bartlett RL 2nd, et al. Tuning cell adhesion by incorporation of charged silicate nanoparticles as cross-linkers to polyethylene oxide[J]. Macromol Biosci, 2010, 10(12):1416-1423.
[25] Takahashi T, Yamada Y, Kataoka K, et al.Prepara-tion of a novel PEG-clay hybrid as a DDS material: dispersion stability and sustained release profiles[J]. J Control Release, 2005, 107(3):408-416.
[26] Fasting C, Schalley CA, Weber M, et al.Multiva-lency as a chemical organization and action principle[J]. Angew Chem Int Ed Engl, 2012, 51(42):10472-10498.
[27] Owens DE 3rd, Peppas NA. Opsonization, biodistri-bution, and pharmacokinetics of polymeric nano-particles[J]. Int J Pharm, 2006, 307(1):93-102.
[28] Wheeler PA, Wang J, Baker J, et al.Synthesis and characterization of covalently functionalized laponite clay[J]. Chem Mater, 2005, 17(11):3012-3018.
[29] Murua A, Portero A, Orive G, et al.Cell microencap-sulation technology: towards clinical application[J]. J Control Release, 2008, 132(2):76-83.
[30] Luginbuehl V, Meinel L, Merkle HP, et al.Localized delivery of growth factors for bone repair[J]. Eur J Pharm Biopharm, 2004, 58(2):197-208.
[31] Baker SE, Sawvel AM, Zheng N, et al.Controlling bioprocesses with inorganic surfaces: layered clay hemostatic agents[J]. Chem Mater, 2007, 19(18): 4390-4392.
[32] Ekenseair AK, Boere KW, Tzouanas SN, et al.Struc-ture-property evaluation of thermally and che-mically gelling injectable hydrogels for tissue en-gineering[J]. Biomacromolecules, 2012, 13(9):2821-2830.
[33] Gaharwar AK, Avery RK, Assmann A, et al.Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage[J]. ACS Nano, 2014, 8(10):9833-9842.
[34] Lu HD, Soranno DE, Rodell CB, et al.Secondary photocrosslinking of injectable shear-thinning dock-and-lock hydrogels[J]. Adv Healthc Mater, 2013, 2(7):1028-1036.
[35] Chen S, Osaka A, Ikoma T, et al.Fabrication, mi-crostructure, and BMP-2 delivery of novel biode-gradable and biocompatible silicate-collagen hybrid fibril sheets[J]. J Mater Chem, 2011, 21(29):10942-10948.
[36] Slaughter BV, Khurshid SS, Fisher OZ, et al.Hydro-gels in regenerative medicine[J]. Adv Mater Wein-heim, 2009, 21(32/33):3307-3329.
[37] Place ES, Evans ND, Stevens MM.Complexity in biomaterials for tissue engineering[J]. Nat Mater, 2009, 8(6):457-470.
[38] Haraguchi K, Takehisa T, Fan S.Effects of clay content on the properties of nanocomposite hydro-gels composed of poly(N-isopropylacrylamide) and clay[J]. Macromolecules, 2002, 35(27):10162-10171.
[39] Gaharwar AK, Peppas NA, Khademhosseini A.Nanocomposite hydrogels for biomedical applica-tions[J]. Biotechnol Bioeng, 2014, 111(3):441-453.
[40] Xavier JR, Thakur T, Desai P, et al.Bioactive nano-engineered hydrogels for bone tissue engineering: a growth-factor-free approach[J]. ACS Nano, 2015, 9(3):3109-3118.
[1] 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746.
[2] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
[3] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[4] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[5] 易芳,王斯任,褚衍昊,卢燕勤. 骨组织工程支架材料修复牙槽嵴裂的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 603-610.
[6] 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285.
[7] 张艺馨, 李磊. 磷酸钙支架-药物缓释体系在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 346-350.
[8] 张佳, 柳忠豪. 锶在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 50-54.
[9] 郑健茂 毛学理 凌均棨. 镁基支架及其在动物骨缺损修复中的应用[J]. 国际口腔医学杂志, 2015, 42(6): 720-723.
[10] 夏佳佳1 王岚2 章燕珍3. 高浓度葡萄糖对人牙周膜成纤维细胞成骨分化能力的影响[J]. 国际口腔医学杂志, 2015, 42(4): 415-419.
[11] 李思敏1 郭良微1 周晋2 高云飞1. 富血小板血浆/藻酸盐缓释载体复合物修复骨缺损的实验研究[J]. 国际口腔医学杂志, 2014, 41(5): 546-551.
[12] 司家文1 郭礼和2 沈国芳1. 羊膜上皮细胞的生物学特性和骨向分化[J]. 国际口腔医学杂志, 2014, 41(5): 575-578.
[13] 朱晓晶 王焱. 钛种植体表面共沉积钙磷-生物活性分子的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 617-620.
[14] 唐宇欣1 金晗1 史册1 朱阳1 王丹丹1 王贺1 林崇韬2 孙宏晨1. 脂肪干细胞及其向成骨细胞分化的调控机制[J]. 国际口腔医学杂志, 2014, 41(4): 418-423.
[15] 李允允 法永红. 透明质酸在口腔领域中的应用进展[J]. 国际口腔医学杂志, 2013, 40(3): 344-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .