国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (3): 340-345.doi: 10.7518/gjkq.2018.03.018
梁馨予, 石佳博, 陈文川, 朱智敏
Liang Xinyu, Shi Jiabo, Chen Wenchuan, Zhu Zhimin
摘要: 硅酸镁锂是一种纳米黏土材料,因其具有的细胞水平大小、带电片晶结构和较高的表体积比,易与蛋白分子、细胞、聚合物交联。随着对硅酸镁锂研究的不断深入,近年来该材料已逐渐发展到骨组织工程领域。本文以硅酸镁锂的物理化学性质和生物学性质为基础,对骨组织工程中硅酸镁锂对种子细胞功能调控、生长因子递载以及基质材料改良的研究进展作一综述,以期为该材料在骨组织工程中的应用研究提供参考。
中图分类号:
[1] Nazirkar G, Singh S, Dole V, et al.Effortless effort in bone regeneration: a review[J]. J Int Oral Health, 2014, 6(3):120-124. [2] Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE.Scaffold design for bone regeneration[J]. J Nanosci Nanotechnol, 2014, 14(1):15-56. [3] Amini AR, Laurencin CT, Nukavarapu SP.Bone tissue engineering: recent advances and challenges[J]. Crit Rev Biomed Eng, 2012, 40(5):363-408. [4] Alford AI, Kozloff KM, Hankenson KD.Extracellular matrix networks in bone remodeling[J]. Int J Biochem Cell Biol, 2015, 65:20-31. [5] Gaharwar AK, Mihaila SM, Swami A, et al.Bioac-tive silicate nanoplatelets for osteogenic differentia-tion of human mesenchymal stem cells[J]. Adv Mater Weinheim, 2013, 25(24):3329-3336. [6] Mihaila SM, Gaharwar AK, Reis RL, et al.The os-teogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets[J]. Biomaterials, 2014, 35(33):9087-9099. [7] Chimene D, Alge DL, Gaharwar AK.Two-dimen-sional nanomaterials for biomedical applications: emerging trends and future prospects[J]. Adv Mater Weinheim, 2015, 27(45):7261-7284. [8] Wegst UG, Bai H, Saiz E, et al.Bioinspired struc-tural materials[J]. Nat Mater, 2015, 14(1):23-36. [9] Dawson JI, Oreffo RO.Clay: new opportunities for tissue regeneration and biomaterial design[J]. Adv Mater Weinheim, 2013, 25(30):4069-4086. [10] Kerativitayanan P, Carrow JK, Gaharwar AK.Nano-materials for engineering stem cell responses[J]. Adv Healthc Mater, 2015, 4(11):1600-1627. [11] Xu M, Liang T, Shi M, et al.Graphene-like two-dimensional materials[J]. Chem Rev, 2013, 113(5): 3766-3798. [12] Cummins HZ.Liquid, glass, gel: the phases of co-lloidal laponite[J]. J Non-Cryst Sol, 2007, 353(41): 3891-3905. [13] Mongondry P, Tassin JF, Nicolai T.Revised state diagram of laponite dispersions[J]. J Colloid Inter-face Sci, 2005, 283(2):397-405. [14] Dawson JI, Kanczler JM, Yang XB, et al.Clay gels for the delivery of regenerative microenvironments[J]. Adv Mater Weinheim, 2011, 23(29):3304-3308. [15] Campbell ID, Humphries MJ.Integrin structure, activation, and interactions[J]. Cold Spring Harb Perspect Biol, 2011, 3(3). doi:10.1101/cshperspect.a004994. [16] Motskin M, Wright DM, Muller K, et al.Hydroxya-patite nano and microparticles: correlation of particle properties with cytotoxicity and biostability[J]. Bio-materials, 2009, 30(19):3307-3317. [17] Park MVDZ, Annema W, Salvati A, et al. [18] Napierska D, Thomassen LC, Rabolli V, et al.Size-dependent cytotoxicity of monodisperse silica nano-particles in human endothelial cells[J]. Small, 2009, 5(7):846-853. [19] Gaharwar AK, Kishore V, Rivera C, et al.Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differen-tiation of human mesenchymal stem cells[J]. Ma-cromol Biosci, 2012, 12(6):779-793. [20] Gaharwar AK, Schexnailder PJ, Kline BP, et al.As-sessment of using laponite cross-linked poly (ethy-lene oxide) for controlled cell adhesion and minera-lization[J]. Acta Biomater, 2011, 7(2):568-577. [21] Wang C, Wang S, Li K, et al.Preparation of laponite bioceramics for potential bone tissue engineering applications[J]. PLoS One, 2014, 9(6):e99585. [22] Chang CW, van Spreeuwel A, Zhang C, et al. PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold[J]. Soft Matter, 2010, 6(20):5157-5164. [23] Gaharwar AK, Schexnailder P, Kaul V, et al.Highly extensible bio-nanocomposite films with direction-dependent properties[J]. MAdv Funct Mater, 2010(3): 429-436. [24] Schexnailder PJ, Gaharwar AK, Bartlett RL 2nd, et al. Tuning cell adhesion by incorporation of charged silicate nanoparticles as cross-linkers to polyethylene oxide[J]. Macromol Biosci, 2010, 10(12):1416-1423. [25] Takahashi T, Yamada Y, Kataoka K, et al.Prepara-tion of a novel PEG-clay hybrid as a DDS material: dispersion stability and sustained release profiles[J]. J Control Release, 2005, 107(3):408-416. [26] Fasting C, Schalley CA, Weber M, et al.Multiva-lency as a chemical organization and action principle[J]. Angew Chem Int Ed Engl, 2012, 51(42):10472-10498. [27] Owens DE 3rd, Peppas NA. Opsonization, biodistri-bution, and pharmacokinetics of polymeric nano-particles[J]. Int J Pharm, 2006, 307(1):93-102. [28] Wheeler PA, Wang J, Baker J, et al.Synthesis and characterization of covalently functionalized laponite clay[J]. Chem Mater, 2005, 17(11):3012-3018. [29] Murua A, Portero A, Orive G, et al.Cell microencap-sulation technology: towards clinical application[J]. J Control Release, 2008, 132(2):76-83. [30] Luginbuehl V, Meinel L, Merkle HP, et al.Localized delivery of growth factors for bone repair[J]. Eur J Pharm Biopharm, 2004, 58(2):197-208. [31] Baker SE, Sawvel AM, Zheng N, et al.Controlling bioprocesses with inorganic surfaces: layered clay hemostatic agents[J]. Chem Mater, 2007, 19(18): 4390-4392. [32] Ekenseair AK, Boere KW, Tzouanas SN, et al.Struc-ture-property evaluation of thermally and che-mically gelling injectable hydrogels for tissue en-gineering[J]. Biomacromolecules, 2012, 13(9):2821-2830. [33] Gaharwar AK, Avery RK, Assmann A, et al.Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage[J]. ACS Nano, 2014, 8(10):9833-9842. [34] Lu HD, Soranno DE, Rodell CB, et al.Secondary photocrosslinking of injectable shear-thinning dock-and-lock hydrogels[J]. Adv Healthc Mater, 2013, 2(7):1028-1036. [35] Chen S, Osaka A, Ikoma T, et al.Fabrication, mi-crostructure, and BMP-2 delivery of novel biode-gradable and biocompatible silicate-collagen hybrid fibril sheets[J]. J Mater Chem, 2011, 21(29):10942-10948. [36] Slaughter BV, Khurshid SS, Fisher OZ, et al.Hydro-gels in regenerative medicine[J]. Adv Mater Wein-heim, 2009, 21(32/33):3307-3329. [37] Place ES, Evans ND, Stevens MM.Complexity in biomaterials for tissue engineering[J]. Nat Mater, 2009, 8(6):457-470. [38] Haraguchi K, Takehisa T, Fan S.Effects of clay content on the properties of nanocomposite hydro-gels composed of poly(N-isopropylacrylamide) and clay[J]. Macromolecules, 2002, 35(27):10162-10171. [39] Gaharwar AK, Peppas NA, Khademhosseini A.Nanocomposite hydrogels for biomedical applica-tions[J]. Biotechnol Bioeng, 2014, 111(3):441-453. [40] Xavier JR, Thakur T, Desai P, et al.Bioactive nano-engineered hydrogels for bone tissue engineering: a growth-factor-free approach[J]. ACS Nano, 2015, 9(3):3109-3118. |
[1] | 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746. |
[2] | 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70. |
[3] | 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224. |
[4] | 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94. |
[5] | 易芳,王斯任,褚衍昊,卢燕勤. 骨组织工程支架材料修复牙槽嵴裂的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 603-610. |
[6] | 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285. |
[7] | 张艺馨, 李磊. 磷酸钙支架-药物缓释体系在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 346-350. |
[8] | 张佳, 柳忠豪. 锶在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 50-54. |
[9] | 郑健茂 毛学理 凌均棨. 镁基支架及其在动物骨缺损修复中的应用[J]. 国际口腔医学杂志, 2015, 42(6): 720-723. |
[10] | 夏佳佳1 王岚2 章燕珍3. 高浓度葡萄糖对人牙周膜成纤维细胞成骨分化能力的影响[J]. 国际口腔医学杂志, 2015, 42(4): 415-419. |
[11] | 李思敏1 郭良微1 周晋2 高云飞1. 富血小板血浆/藻酸盐缓释载体复合物修复骨缺损的实验研究[J]. 国际口腔医学杂志, 2014, 41(5): 546-551. |
[12] | 司家文1 郭礼和2 沈国芳1. 羊膜上皮细胞的生物学特性和骨向分化[J]. 国际口腔医学杂志, 2014, 41(5): 575-578. |
[13] | 朱晓晶 王焱. 钛种植体表面共沉积钙磷-生物活性分子的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 617-620. |
[14] | 唐宇欣1 金晗1 史册1 朱阳1 王丹丹1 王贺1 林崇韬2 孙宏晨1. 脂肪干细胞及其向成骨细胞分化的调控机制[J]. 国际口腔医学杂志, 2014, 41(4): 418-423. |
[15] | 李允允 法永红. 透明质酸在口腔领域中的应用进展[J]. 国际口腔医学杂志, 2013, 40(3): 344-346. |
|