国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (2): 197-203.doi: 10.7518/gjkq.2022025
摘要:
各种原因造成的口腔硬组织缺损给口腔修复带来了极大的困难。寻找一种具有良好骨传导性、骨诱导性、生物相容性和可吸收性的新型骨修复材料是近年来的研究热点。牙本质是一种新型骨修复材料,来源广泛,可取自临床中拔除的废用牙或阻生齿。牙本质与牙槽骨有相同的组织学来源,理化性质相似,且含有大量的骨活性因子,用作骨修复材料具有其他材料无法比拟的天然优势,近年来已有多个动物实验与临床研究表明其成骨效果良好。本文就牙本质材料的成骨机制、处理方法及临床应用等进展进行综述,为临床牙本质作为骨修复材料的应用提供参考。
中图分类号:
[1] |
Yamada M, Egusa H. Current bone substitutes for implant dentistry[J]. J Prosthodont Res, 2018, 62(2): 152-161.
doi: 10.1016/j.jpor.2017.08.010 |
[2] |
Yeomans JD Urist MR. Bone induction by decalcified dentine implanted into oral, osseous and muscle tissues[J]. Arch Oral Biol, 1967, 12(8): 999-IN16.
pmid: 4226721 |
[3] |
Huggins CB, Urist MR. Dentin matrix transformation: rapid induction of alkaline phosphatase and cartilage[J]. Science, 1970, 167(3919): 896-898.
pmid: 5410857 |
[4] |
Koga T, Minamizato T, Kawai Y, et al. Bone regeneration using dentin matrix depends on the degree of demineralization and particle size[J]. PLoS One, 2016, 11(1): e0147235.
doi: 10.1371/journal.pone.0147235 |
[5] |
Sriarj W, Aoki K, Ohya K, et al. TGF-β in dentin matrix extract induces osteoclastogenesis in vitro[J]. Odontology, 2015, 103(1): 9-18.
doi: 10.1007/s10266-013-0140-3 |
[6] |
Yang H, Li J, Hu Y, et al. Treated dentin matrix particles combined with dental follicle cell sheet stimulate periodontal regeneration[J]. Dent Mater, 2019, 35(9): 1238-1253.
doi: 10.1016/j.dental.2019.05.016 |
[7] |
Ji B, Sheng L, Chen G, et al. The combination use of platelet-rich fibrin and treated dentin matrix for tooth root regeneration by cell homing[J]. Tissue Eng Part A, 2015, 21(1/2): 26-34.
doi: 10.1089/ten.tea.2014.0043 |
[8] | 杨禾丰, 胡瑜, 孙晶晶, 等. 处理的牙本质基质对骨髓间充质干细胞成骨分化影响的研究[J]. 华西口腔医学杂志, 2016, 34(3): 281-285. |
Yang HF, Hu Y, Sun JJ, et al. Treated dentin matrix enhances proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells[J]. West China J Stomatol, 2016, 34(3): 281-285. | |
[9] |
Kim YK, Lee J, Um IW, et al. Tooth-derived bone graft material[J]. J Korean Assoc Oral Maxillofac Surg, 2013, 39(3): 103.
doi: 10.5125/jkaoms.2013.39.3.103 |
[10] |
Calvo-Guirado JL, Ballester-Montilla A, N de Aza P, et al. Particulated, extracted human teeth characterization by SEM-EDX evaluation as a biomaterial for socket preservation: an in vitro study[J]. Materials, 2019, 12(3): 380.
doi: 10.3390/ma12030380 |
[11] |
Tabatabaei FS, Tatari S, Samadi R, et al. Different methods of dentin processing for application in bone tissue engineering: a systematic review[J]. J Biomed Mater Res Part A, 2016, 104(10): 2616-2627.
doi: 10.1002/jbm.a.35790 |
[12] |
Avery SJ, Sadaghiani L, Sloan AJ, et al. Analysing the bioactive makeup of demineralised dentine matrix on bone marrow mesenchymal stem cells for enhanced bone repair[J]. Eur Cell Mater, 2017, 34: 1-14.
doi: 10.22203/eCM.v034a01 pmid: 28692113 |
[13] |
Wang F, Xie C, Ren N, et al. Human freeze-dried dentin matrix as a biologically active scaffold for tooth tissue engineering[J]. J Endod, 2019, 45(11): 1321-1331.
doi: 10.1016/j.joen.2019.08.006 |
[14] | Maeda NT, Yoshimoto M, Allegrini S, et al. Hydroxyapatite dome for bone neoformation in rabbit tibia[J]. Int J Oral Maxillofac Implants, 2016, 31(3): 571-579. |
[15] |
Wang YS, Luo S, Zhang DF, et al. Sika pilose antler type I collagen promotes BMSC differentiation via the ERK1/2 and p38-MAPK signal pathways[J]. Pharm Biol, 2017, 55(1): 2196-2204.
doi: 10.1080/13880209.2017.1397177 |
[16] |
Tsai SJ, Chen MH, Lin HY, et al. Pure type-1 collagen application to third molar extraction socket reduces postoperative pain score and duration and promotes socket bone healing[J]. J Formos Med Assoc, 2019, 118(1 pt 3): 481-487.
doi: 10.1016/j.jfma.2018.08.003 |
[17] |
Guo Y, Yuan Y, Wu L, et al. BMP-IHH-mediated interplay between mesenchymal stem cells and osteoclasts supports calvarial bone homeostasis and repair[J]. Bone Res, 2018, 6: 30.
doi: 10.1038/s41413-018-0031-x |
[18] |
Zhang Y, Yang WX, Devit A, et al. Efficiency of coculture with angiogenic cells or physiological BMP-2 administration on improving osteogenic differentiation and bone formation of MSCs[J]. J Biomed Mater Res Part A, 2019, 107(3): 643-653.
doi: 10.1002/jbm.a.v107.3 |
[19] |
Choi JW, Jeong WS, Yang SJ, et al. Appropriate and effective dosage of BMP-2 for the ideal regeneration of calvarial bone defects in beagles[J]. Plast Reconstr Surg, 2016, 138(1): 64e-72e.
doi: 10.1097/PRS.0000000000002290 |
[20] |
Bertassoni LE. Dentin on the nanoscale: hierarchical organization, mechanical behavior and bioinspired engineering[J]. Dent Mater, 2017, 33(6): 637-649.
doi: S0109-5641(16)30695-9 pmid: 28416222 |
[21] |
Yu Y, Wang LJ, Yu JH, et al. Dentin matrix proteins (DMPs) enhance differentiation of BMMSCs via ERK and P38 MAPK pathways[J]. Cell Tissue Res, 2014, 356(1): 171-182.
doi: 10.1007/s00441-013-1790-8 |
[22] |
Padovano JD, Ramachandran A, Bahmanyar S, et al. Bone-specific overexpression of DMP1 influences osteogenic gene expression during endochondral and intramembranous ossification[J]. Connect Tissue Res, 2014, 55(Suppl 1): 121-124.
doi: 10.3109/03008207.2014.923878 |
[23] |
Sun Y, Weng Y, Zhang C, et al. Glycosylation of dentin matrix protein 1 is critical for osteogenesis[J]. Sci Rep, 2015, 5: 17518.
doi: 10.1038/srep17518 |
[24] |
Chen L, Jacquet R, Lowder E, et al. Refinement of collagen-mineral interaction: a possible role for osteocalcin in apatite crystal nucleation, growth and development[J]. Bone, 2015, 71: 7-16.
doi: 10.1016/j.bone.2014.09.021 |
[25] |
Foster BL, Ao M, Salmon CR, et al. Osteopontin regulates dentin and alveolar bone development and mineralization[J]. Bone, 2018, 107: 196-207.
doi: S8756-3282(17)30444-1 pmid: 29313816 |
[26] |
Reis-Filho CR, Silva ER, Martins AB, et al. Demineralised human dentine matrix stimulates the expression of VEGF and accelerates the bone repair in tooth sockets of rats[J]. Arch Oral Biol, 2012, 57(5): 469-476.
doi: 10.1016/j.archoralbio.2011.10.011 pmid: 22041019 |
[27] | Um IW. Demineralized dentin matrix (DDM) as a carrier for recombinant human bone morphogenetic proteins (rhBMP-2)[J]. Nov Biomater Regen Med, 2018, 1077: 487-499. |
[28] | Bono N, Tarsini P, Candiani G. Demineralized dentin and enamel matrices as suitable substrates for bone regeneration[J]. J Appl Biomater Funct Mater, 2017, 15(3): e236-e243. |
[29] | Bono N, Tarsini P, Candiani G. BMP-2 and type I collagen preservation in human deciduous teeth after demineralization[J]. J Appl Biomater Funct Mater, 2019, 17(2): 2280800018784230. |
[30] | 郭津源, 仲维剑, 柴松岭, 等. 牙齿煅烧颗粒结合富血小板纤维蛋白修复骨缺损的实验研究[J]. 口腔医学研究, 2015, 31(11): 1069-1072. |
Guo JY, Zhong WJ, Chai SL, et al. Bone regeneration effects of tooth ash in conjunction with platelet-rich fibrin in an animal model[J]. J Oral Sci Res, 2015, 31(11): 1069-1072. | |
[31] | Kim SG. Bone grafting using particulate dentin[J]. Key Eng Mater, 2007(342/343): 29-32. |
[32] |
Atiya BK, Shanmuhasuntharam P, Huat S, et al. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model[J]. Int J Oral Maxillofac Implants, 2014, 29(2): e165-e170.
doi: 10.11607/jomi.te54 |
[33] | Fichant C, David B, Reiss T, et al. Characterization of deproteinized dentin for its use in bone tissue engineering[J]. Comput Methods Biomech Biomed Engin, 2017, 20(Sup1): 73-74. |
[34] |
Tabatabaei FS, Tatari S, Samadi R, et al. Surface characterization and biological properties of regular dentin, demineralized dentin, and deproteinized dentin[J]. J Mater Sci Mater Med, 2016, 27(11): 164.
doi: 10.1007/s10856-016-5780-8 |
[35] |
Moharamzadeh K, Freeman C, Blackwood K. Processed bovine dentine as a bone substitute[J]. Br J Oral Maxillofac Surg, 2008, 46(2): 110-113.
pmid: 17897757 |
[36] | Jaha H, Husein D, Ohyama Y, et al. N-terminal dentin sialoprotein fragment induces type I collagen production and upregulates dentinogenesis marker expression in osteoblasts[J]. Biochem Biophys Rep, 2016, 6: 190-196. |
[37] |
Bailey S, Karsenty G, Gundberg C, et al. Osteocalcin and osteopontin influence bone morphology and mechanical properties[J]. Ann N Y Acad Sci, 2017, 1409(1): 79-84.
doi: 10.1111/nyas.2017.1409.issue-1 |
[38] |
Zhang H, Xie X, Liu P, et al. Transgenic expression of dentin phosphoprotein (DPP) partially rescued the dentin defects of DSPP-null mice[J]. PLoS One, 2018, 13(4): e0195854.
doi: 10.1371/journal.pone.0195854 |
[39] |
Li W, Chen L, Chen Z, et al. Dentin sialoprotein facilitates dental mesenchymal cell differentiation and dentin formation[J]. Sci Rep, 2017, 7(1): 300.
doi: 10.1038/s41598-017-00339-w |
[40] |
Chandrasekaran S, Ramachandran A, Eapen A, et al. Stimulation of periodontal ligament stem cells by dentin matrix protein 1 activates mitogen-activated protein kinase and osteoblast differentiation[J]. J Periodontol, 2013, 84(3): 389-395.
doi: 10.1902/jop.2012.120004 pmid: 22612367 |
[41] | Lee CP, Colombo JS, Ayre WN, et al. Elucidating the cellular actions of demineralised dentine matrix extract on a clonal dental pulp stem cell population in orchestrating dental tissue repair[J]. J Tissue Eng, 2015, 6: 204173141558631. |
[42] |
Kim SY, Kim YK, Park YH, et al. Evaluation of the healing potential of demineralized dentin matrix fixed with recombinant human bone morphogenetic protein-2 in bone grafts[J]. Materials, 2017, 10(9): 1049.
doi: 10.3390/ma10091049 |
[43] | Gomes MF, Valva VN, Vieira EMM, et al. Homogenous demineralized dentin matrix and platelet-rich plasma for bone tissue engineering in cranioplasty of diabetic rabbits: biochemical, radiographic, and histological analysis[J]. Int J Oral Maxillofac Surg, 2016, 45(2): 255-266. |
[44] | Kabir MA, Murata M, Akazawa T, et al. Evaluation of perforated demineralized dentin scaffold on bone regeneration in critical-size sheep iliac defects[J]. Clin Oral Implants Res, 2017, 28(11): e227-e235. |
[45] |
Schwarz F, Schmucker A, Becker J. Initial case report of an extracted tooth root used for lateral alveolar ridge augmentation[J]. J Clin Periodontol, 2016, 43(11): 985-989.
doi: 10.1111/jcpe.12602 pmid: 27440735 |
[46] |
Melek LN, El Said MM. Evaluation of “autogenous bioengineered injectable PRF-tooth graft” combination (ABIT) in reconstruction of maxillary alveolar ridge defects: CBCT volumetric analysis[J]. Saudi J Dent Res, 2017, 8(1/2): 86-96.
doi: 10.1016/j.sjdr.2016.10.005 |
[47] |
Kim YK, Kim SG, Yun PY, et al. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2014, 117(1): e39-e45.
doi: 10.1016/j.oooo.2012.04.018 |
[48] |
Kim YK, Lee JH, Um IW, et al. Guided bone regeneration using demineralized dentin matrix: long-term follow-up[J]. J Oral Maxillofac Surg, 2016, 74(3): 515.e1-515.e9.
doi: 10.1016/j.joms.2015.10.030 |
[49] |
Kim YK, Pang KM, Yun PY, et al. Long-term follow-up of autogenous tooth bone graft blocks with dental implants[J]. Clin Case Rep, 2017, 5(2): 108-118.
doi: 10.1002/ccr3.2017.5.issue-2 |
[50] |
Minamizato T, Koga T, I T, et al. Clinical application of autogenous partially demineralized dentin matrix prepared immediately after extraction for alveolar bone regeneration in implant dentistry: a pilot study[J]. Int J Oral Maxillofac Surg, 2018, 47(1): 125-132.
doi: 10.1016/j.ijom.2017.02.1279 |
[51] |
Kim YK, Lee J, Yun JY, et al. Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study[J]. J Periodontal Implant Sci, 2014, 44(5): 216-221.
doi: 10.5051/jpis.2014.44.5.216 |
[52] |
Pang KM, Um IW, Kim YK, et al. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with anorganic bovine bone[J]. Clin Oral Impl Res, 2017, 28(7): 809-815.
doi: 10.1111/clr.2017.28.issue-7 |
[53] | 吴峥嵘, 左园林, 李朝晖. 自体牙本质颗粒结合富血小板纤维蛋白膜治疗93例下颌第一磨牙根分叉病变效果评价[J]. 上海口腔医学, 2020, 29(2): 213-216. |
Wu ZR, Zuo YL, Li CH. Evaluation of 93 cases of mandibular first molar root bifurcation lesions treated with autologous dentin Granules combined with platelet-rich fibrin membrane[J]. Shanghai J Stomatol, 2020, 29(2): 213-216. | |
[54] |
Xiao W, Hu C, Chu C, et al. Autogenous dentin shell grafts versus bone shell grafts for alveolar ridge reconstruction: a novel technique with preliminary results of a prospective clinical study[J]. Int J Periodontics Restorative Dent, 2019, 39(6): 885-893.
doi: 10.11607/prd.4344 |
[55] |
Schwarz F, Hazar D, Becker K, et al. Efficacy of autogenous tooth roots for lateral alveolar ridge augmentation and staged implant placement. A prospective controlled clinical study[J]. J Clin Periodontol, 2018, 45(8): 996-1004.
doi: 10.1111/jcpe.12977 pmid: 29972245 |
[56] |
Kim ES. Autogenous fresh demineralized tooth graft prepared at chairside for dental implant[J]. Maxillofac Plast Reconstr Surg, 2015, 37(1): 8.
doi: 10.1186/s40902-015-0009-1 |
[1] | 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115. |
[2] | 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358. |
[3] | 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250. |
[4] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632. |
[5] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[6] | 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488. |
[7] | 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496. |
[8] | 雷彬,陈柯. 牙本质发育不良Ⅰ型及其分型治疗[J]. 国际口腔医学杂志, 2022, 49(3): 332-336. |
[9] | 丁景瑜,田子璐,王惠敏,朱轩言,杨宇斌,朱松. 即刻牙本质封闭的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 121-124. |
[10] | 章善,沈树平,张舫,杨卫东. Er: YAG激光光子激活光声流技术对根管壁牙本质失水状况及牙根抗压强度的影响[J]. 国际口腔医学杂志, 2022, 49(1): 55-59. |
[11] | 何蓉,刘学军,周宇琨. 光子引导的光声流效应在根管荡洗中应用的系统评价[J]. 国际口腔医学杂志, 2021, 48(6): 644-655. |
[12] | 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744. |
[13] | 刘嘉程,孟昭松,李宏捷,隋磊. 卵泡抑素在口腔颌面部发育中的作用及其治疗应用前景[J]. 国际口腔医学杂志, 2021, 48(5): 556-562. |
[14] | 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391-397. |
[15] | 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70. |
|