国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (4): 391-397.doi: 10.7518/gjkq.2021072
摘要:
生物屏障膜(BBM)的应用是引导组织/骨再生(GTR/GBR)技术的关键环节,其主要作用是将牙周缺损区与牙龈组织相隔离,防止牙龈上皮组织向下方的牙周缺损区快速生长,从而为牙周组织的再生创造一个相对封闭的良好环境。理想的BBM应具有足够的机械强度、良好的促成骨及抗炎等诸多性能,然而目前使用的BBM均未能兼顾上述要求,均具有不同程度的缺点,GTR/GBR效果不理想。因此学者们广泛展开了对新一代可吸收GBR/GTR膜的开发和研究。在目前研究较为充分的BBM中,功能梯度膜(FGM)具有提升BBM诸多特性,使之更趋于理想的强大潜力,有增强临床GTR/GBR效果的广阔前景。本文对功能梯度GBR/GTR膜的研究进展进行综述,旨在为其进一步研究和开发提供参考。
中图分类号:
[1] | Naebe M, Shirvanimoghaddam K. Functionally gra-ded materials: a review of fabrication and properties[J]. Appl Mater Today, 2016,5:223-245. |
[2] |
Zhang C, Chen F, Huang Z, et al. Additive manufacturing of functionally graded materials: a review[J]. Mater Sci Eng A, 2019,764:138209.
doi: 10.1016/j.msea.2019.138209 |
[3] |
Traini T, Mangano C, Sammons RL, et al. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for ma-nufacture of porous titanium dental Implants[J]. Dent Mater, 2008,24(11):1525-1533.
doi: 10.1016/j.dental.2008.03.029 pmid: 18502498 |
[4] |
Holm-Pedersen P, Lang NP, Müller F. What are the longevities of teeth and oral implants[J]. Clin Oral Implants Res, 2007,18(Suppl 3):15-19.
doi: 10.1111/clr.2007.18.issue-s3 |
[5] |
Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications[J]. Clin Oral Implants Res, 2010,21(6):567-576.
doi: 10.1111/j.1600-0501.2010.01922.x pmid: 20666785 |
[6] |
Turri A, Elgali I, Vazirisani F, et al. Guided bone regeneration is promoted by the molecular events in the membrane compartment[J]. Biomaterials, 2016,84:167-183.
doi: 10.1016/j.biomaterials.2016.01.034 |
[7] |
Omar O, Elgali I, Dahlin C, et al. Barrier membranes: more than the barrier effect[J]. J Clin Periodontol, 2019,46(Suppl 21):103-123.
doi: 10.1111/jcpe.13068 |
[8] |
Bottino MC, Thomas V. Membranes for periodontal regeneration: a materials perspective[J]. Front Oral Biol, 2015,17:90-100.
doi: 10.1159/000381699 pmid: 26201279 |
[9] |
Zanin H, Rodrigues BVM, Neto WAR, et al. High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: a route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds[J]. Mater Chem Phys, 2016,177:56-66.
doi: 10.1016/j.matchemphys.2016.03.040 |
[10] |
Sowmya S, Bumgardener JD, Chennazhi KP, et al. Role of nanostructured biopolymers and biocera-mics in enamel, dentin and periodontal tissue rege-neration[J]. Prog Polym Sci, 2013,38:1748-1772.
doi: 10.1016/j.progpolymsci.2013.05.005 |
[11] |
Iwata T, Yamato M, Tsuchioka H, et al. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model[J]. Biomaterials, 2009,30(14):2716-2723.
doi: 10.1016/j.biomaterials.2009.01.032 |
[12] |
Liu Z, Meyers MA, Zhang Z, et al. Functional gra-dients and heterogeneities in biological materials: design principles, functions, and bioinspired applications[J]. Prog Mater Sci, 2017,88:467-498.
doi: 10.1016/j.pmatsci.2017.04.013 |
[13] |
Gentile P, Chiono V, Tonda-Turo C, et al. Polymeric membranes for guided bone regeneration[J]. Biotechnol J, 2011,6:1187-1197.
doi: 10.1002/biot.v6.10 |
[14] | Wang JL, Wang LN, Zhou ZY, et al. Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review[J]. Polymers (Basel), 2016,8(4):E115. |
[15] |
Carbonell JM, Martín IS, Santos A, et al. High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review[J]. Int J Oral Maxillofac Surg, 2014,43(1):75-84.
doi: 10.1016/j.ijom.2013.05.017 |
[16] |
Qasim SSB, Zafar MS, Niazi FH, et al. Functionally graded biomimetic biomaterials in dentistry: an evidence-based update[J]. J Biomater Sci Polym Ed, 2020,31(9):1144-1162.
doi: 10.1080/09205063.2020.1744289 pmid: 32202207 |
[17] |
Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration: a materials perspective[J]. Dent Mater, 2012,28(7):703-721.
doi: 10.1016/j.dental.2012.04.022 pmid: 22592164 |
[18] |
Bottino MC, Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration[J]. Acta Biomater, 2011,7(1):216-224.
doi: 10.1016/j.actbio.2010.08.019 pmid: 20801241 |
[19] | Teng SH, Lee EJ, Wang P, et al. Three-layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration[J]. J Biomed Mater Res B Appl Biomater, 2008,87(1):132-138. |
[20] |
Ku Y, Shim IK, Lee JY, et al. Chitosan/poly(L-lactic acid) multilayered membrane for guided tissue regeneration[J]. J Biomed Mater Res, 2009,90A(3):766-772.
doi: 10.1002/jbm.a.v90a:3 |
[21] |
Masoudi Rad M, Nouri Khorasani S, Ghasemi-Mobarakeh L, et al. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application[J]. Mater Sci Eng C Mater Biol Appl, 2017,80:75-87.
doi: S0928-4931(17)30305-3 pmid: 28866225 |
[22] |
Ma SQ, Chen Z, Qiao F, et al. Guided bone regene-ration with tripolyphosphate cross-linked asymme-tric chitosan membrane[J]. J Dent, 2014,42(12):1603-1612.
doi: 10.1016/j.jdent.2014.08.015 |
[23] |
Jiang T, Carbone EJ, Lo KWH, et al. Electrospinning of polymer nanofibers for tissue regeneration[J]. Prog Polym Sci, 2015,46:1-24.
doi: 10.1016/j.progpolymsci.2014.12.001 |
[24] |
Liao SS, Wang W, Uo M, et al. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration[J]. Biomaterials, 2005,26(36):7564-7571.
doi: 10.1016/j.biomaterials.2005.05.050 |
[25] |
Liao SS, Watari F, Zhu YH, et al. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro[J]. Dent Mater, 2007,23(9):1120-1128.
doi: 10.1016/j.dental.2006.06.045 |
[26] |
Thevar JTK, Malek NANN, Kadir MRA. In vitro degradation of triple layered poly (lactic-co-glycolic acid) composite membrane composed of nanoapatite and lauric acid for guided bone regeneration applications[J]. Materials Chemistry and Physics, 2019,221:501-514.
doi: 10.1016/j.matchemphys.2018.09.060 |
[27] |
Saarani NN, Jamuna-Thevi K, Shahab N, et al. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone rege-neration membrane on periodontal bacteria[J]. Dent Mater J, 2017,36(3):260-265.
doi: 10.4012/dmj.2016-177 pmid: 28111388 |
[28] |
Leal AI, Caridade SG, Ma JL, et al. Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: characterization and in vitro biolo-gical behavior[J]. Dent Mater, 2013,29(4):427-436.
doi: 10.1016/j.dental.2013.01.009 pmid: 23422419 |
[29] |
Almasi D, Sadeghi M, Lau WJ, et al. Functionally gra-ded polymeric materials: a brif review of current fa-brication methods and introduction of a novel fabrication method[J]. Mater Sci Eng C Mater Biol Appl, 2016,64:102-107.
doi: 10.1016/j.msec.2016.03.053 |
[30] |
Hoornaert A, d’Arros C, Heymann MF, et al. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration[J]. Biomed Mater, 2016,11(4):045012.
doi: 10.1088/1748-6041/11/4/045012 |
[31] |
Qasim SB, Najeeb S, Delaine-Smith RM, et al. Potential of electrospun chitosan fibers as a surface la-yer in functionally graded GTR membrane for perio-dontal regeneration[J]. Dent Mater, 2017,33(1):71-83.
doi: S0109-5641(16)30572-3 pmid: 27842886 |
[32] |
Qasim SB, Delaine-Smith RM, Fey T, et al. Freeze ge-lated porous membranes for periodontal tissue regeneration[J]. Acta Biomater, 2015,23:317-328.
doi: S1742-7061(15)00218-4 pmid: 25968357 |
[33] |
Wu S, Wu J, Yue J, et al. Poly (d,l-lactic acid) electrospun fibers with tunable surface nanotopography for modulating drug release profiles[J]. Mater Lett, 2015,161:716-719.
doi: 10.1016/j.matlet.2015.09.065 |
[34] |
Schaub NJ, Le Beux C, Miao JJ, et al. The effect of surface modification of aligned poly-L-lactic acid electrospun fibers on fiber degradation and neurite extension[J]. PLoS One, 2015,10(9):e0136780.
doi: 10.1371/journal.pone.0136780 |
[35] |
Sartori M, Pagani S, Ferrari A, et al. A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations[J]. Mater Sci Eng C Mater Biol Appl, 2017,70(Pt 1):101-111.
doi: S0928-4931(16)30805-0 pmid: 27770869 |
[36] |
Rasoulianboroujeni M, Pitcher S, Tayebi L. Fabrication of gradient scaffolds for bone and dental tissue engineering[J]. Dent Mater, 2016,32:e47-e48.
doi: 10.1016/j.dental.2016.08.096 |
[37] |
Tawakkal IS, Cran MJ, Miltz J, et al. A review of poly(lactic acid)-based materials for antimicrobial pac-kaging[J]. J Food Sci, 2014,79(8):R1477-R1490.
doi: 10.1111/jfds.2014.79.issue-8 |
[38] |
Scaffaro R, Lopresti F, Marino A, et al. Antimicrobial additives for poly(lactic acid) materials and their applications: current state and perspectives[J]. Appl Microbiol Biotechnol, 2018,102(18):7739-7756.
doi: 10.1007/s00253-018-9220-1 |
[39] |
Wang Y, Jiang YX, Zhang YF, et al. Dual functional electrospun core-shell nanofibers for anti-infective gui-ded bone regeneration membranes[J]. Mater Sci Eng C Mater Biol Appl, 2019,98:134-139.
doi: S0928-4931(18)32907-2 pmid: 30813013 |
[40] |
Jiao Y, Tay FR, Niu LN, et al. Advancing antimicrobial strategies for managing oral biofilm infections[J]. Int J Oral Sci, 2019,11(3):28.
doi: 10.1038/s41368-019-0062-1 |
[41] |
Barreras US, Méndez FT, Martínez RE, et al. Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016,58:1182-1187.
doi: 10.1016/j.msec.2015.09.085 pmid: 26478419 |
[42] |
Chou AH, LeGeros RZ, Chen Z, et al. Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes[J]. Implant Dent, 2007,16(1):89-100.
doi: 10.1097/ID.0b013e318031224a |
[43] |
Spinell T, Saliter J, Hackl B, et al. In-vitro cytocompatibility and growth factor content of GBR/GTR me-mbranes[J]. Dent Mater, 2019,35(7):963-969.
doi: S0109-5641(18)30738-3 pmid: 31056222 |
[44] |
Park JK, Yeom J, Oh EJ, et al. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluro-nic acid bi-layer films for periodontal barrier applications[J]. Acta Biomater, 2009,5(9):3394-3403.
doi: 10.1016/j.actbio.2009.05.019 |
[45] |
Erisken C, Kalyon DM, Wang HJ. Functionally gra-ded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications[J]. Biomaterials, 2008,29(30):4065-4073.
doi: 10.1016/j.biomaterials.2008.06.022 pmid: 18649939 |
[46] |
Yang F, Both SK, Yang XC, et al. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application[J]. Acta Biomater, 2009,5(9):3295-3304.
doi: 10.1016/j.actbio.2009.05.023 |
[47] | Jamróz E, Kulawik P, Kopel P. The effect of nanofillers on the functional properties of biopolymer-based films: a review[J]. Polymers (Basel), 2019,11(4):E675. |
[1] | 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115. |
[2] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632. |
[3] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[4] | 汪是琦,常雅琴,陈斌,谭葆春,泥艳红. 植骨术与植骨联用屏障膜在牙周再生治疗中临床疗效对比的系统评价与Meta分析[J]. 国际口腔医学杂志, 2020, 47(6): 644-651. |
[5] | 陶思颖,梁坤能,李继遥. 仿生多肽促进牙体硬组织再矿化的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 37-42. |
[6] | 朱晓晶 王焱. 钛种植体表面共沉积钙磷-生物活性分子的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 617-620. |
[7] | 郗红 周惠 闫秀娟 张宇娜 胡玮玮 黄洋. 纳米技术在龋病治疗中应用的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 563-566. |
[8] | 吴晓光1 赵旭2综述 李毅1审校. 添加剂对釉质再矿化的影响[J]. 国际口腔医学杂志, 2013, 40(4): 526-528. |
[9] | 陈红亮 赵承初 赵峰 钟科 孙勇. 国产异种脱细胞真皮基质在引导骨再生术治疗种植义齿受植区骨缺损中的成骨效果评价[J]. 国际口腔医学杂志, 2013, 40(1): 33-36. |
[10] | 汪池 朱慧勇. 基因修饰的纳米纤维支架的研究进展[J]. 国际口腔医学杂志, 2013, 40(1): 64-67. |
[11] | 邢琳 曲勃颖综述 黄洋审校. 釉质龋的非破坏性治疗方法[J]. 国际口腔医学杂志, 2012, 39(1): 63-65. |
[12] | 王颖1综述 曲晓娟2审校. 引导组织和骨组织再生术及其生长因子在牙周骨缺损治疗中的应用[J]. 国际口腔医学杂志, 2008, 35(6): 636-636~638. |
[13] | 桂和明, 王唯唯, 杜丽娟, 黄杰英, 雷公元, 兰倩. 重度牙周病患牙拔除后即刻自身牙移植2 年疗效与体会[J]. 国际口腔医学杂志, 2008, 35(4): 358-358~360. |
[14] | 李姝慧. 微创即刻种植术与微创即刻负重种植术[J]. 国际口腔医学杂志, 2004, 31(S1): -. |
[15] | 刘云松. 新型牙本质粘接剂的发展方向[J]. 国际口腔医学杂志, 2004, 31(S1): -. |
|