国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (4): 483-488.doi: 10.7518/gjkq.2022045
摘要:
乳牙牙髓干细胞(SHED)是从脱落乳牙残留牙髓中提取的一种牙源性干细胞,其容易获取、储存和培养,并具有自我更新和多向分化等优异性能,与其他间充质干细胞相比优势明显。新近研究中,运用SHED的干细胞治疗已经在多种口腔组织再生修复中获得良好的疗效。本文阐述了SHED的干性维持与分化调控及其在干细胞治疗中的优势,并针对SHED在牙髓-牙本质复合体再生、牙周组织再生、骨再生、神经保护和免疫调节方面的研究进展作一综述。
中图分类号:
1 | Nicola F, Marques MR, Odorcyk F, et al. Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion[J]. Mol Neurobiol, 2019, 56(1): 748-760. |
2 | Ko CS, Chen JH, Su WT. Stem cells from human exfoliated deciduous teeth: a concise review[J]. Curr Stem Cell Res Ther, 2020, 15(1): 61-76. |
3 | Miura M, Gronthos S, Zhao MR, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A, 2003, 100(10): 5807-5812. |
4 | Nait Lechguer A, Couble ML, Labert N, et al. Cell differentiation and matrix organization in engineered teeth[J]. J Dent Res, 2011, 90(5): 583-589. |
5 | Prahasanti C, Nugraha AP, Saskianti T, et al. Exfolia-ted human deciduous tooth stem cells incorporating carbonate apatite scaffold enhance BMP-2, BMP-7 and attenuate MMP-8 expression during initial alveo-lar bone remodeling in Wistar rats (Rattus norvegicus)[J]. Clin Cosmet Investig Dent, 2020, 12: 79-85. |
6 | Dai YY, Ni SY, Ma K, et al. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro [J]. Stem Cell Res Ther, 2019, 10(1): 39. |
7 | Fujii H, Matsubara K, Sakai K, et al. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats[J]. Brain Res, 2015, 1613: 59-72. |
8 | Zhai Y, Wang YY, Rao NQ, et al. Activation and biological properties of human β defensin 4 in stem cells derived from human exfoliated deciduous teeth[J]. Front Physiol, 2019, 10: 1304. |
9 | Werle SB, Chagastelles P, Pranke P, et al. Hypoxia upregulates the expression of the pluripotency mar-kers in the stem cells from human deciduous teeth[J]. Clin Oral Investig, 2019, 23(1): 199-207. |
10 | Sukarawan W, Peetiakarawach K, Pavasant P, et al. Effect of Jagged-1 and Dll-1 on osteogenic differentiation by stem cells from human exfoliated deci-duous teeth[J]. Arch Oral Biol, 2016, 65: 1-8. |
11 | Han Y, Gong T, Zhang C, et al. HIF-1α stabilization enhances angio-/vasculogenic properties of SHED[J]. J Dent Res, 2020, 99(7): 804-812. |
12 | Dahake PT, Panpaliya NP, Kale YJ, et al. Response of stem cells from human exfoliated deciduous teeth (SHED) to three bioinductive materials-an in vitro experimental study[J]. Saudi Dent J, 2020, 32(1): 43-51. |
13 | Ma L, Makino Y, Yamaza H, et al. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine[J]. PLoS One, 2012, 7(12): e51777. |
14 | Wang HH, Zhong Q, Yang TS, et al. Comparative characterization of SHED and DPSCs during extended cultivation in vitro [J]. Mol Med Rep, 2018, 17(5): 6551-6559. |
15 | Chen YJ, Zhao Q, Yang X, et al. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth[J]. Cell Stress Chapero-nes, 2019, 24(3): 527-538. |
16 | Yao SQ, Tan LP, Chen H, et al. Potential research tool of stem cells from human exfoliated deciduous teeth: lentiviral bmi-1 immortalization with EGFP marker[J]. Stem Cells Int, 2019, 2019: 3526409. |
17 | Huang TY, Wang GS, Ko CS, et al. A study of the differentiation of stem cells from human exfoliated deciduous teeth on 3D silk fibroin scaffolds using static and dynamic culture paradigms[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110563. |
18 | Oliveira Prado Bergamo MT, Vitor LLR, Lopes NM, et al. Angiogenic protein synthesis after photobiomodulation therapy on SHED: a preliminary study[J]. Lasers Med Sci, 2020, 35(9): 1909-1918. |
19 | Coyac BR, Chicatun F, Hoac B, et al. Mineralization of dense collagen hydrogel scaffolds by human pulp cells[J]. J Dent Res, 2013, 92(7): 648-654. |
20 | Rosa V, Zhang Z, Grande RH, et al. Dental pulp tissue engineering in full-length human root canals[J]. J Dent Res, 2013, 92(11): 970-975. |
21 | Gotlieb EL, Murray PE, Namerow KN, et al. An ultrastructural investigation of tissue-engineered pulp constructs implanted within endodontically treated teeth[J]. J Am Dent Assoc, 2008, 139(4): 457-465. |
22 | Huang CC, Narayanan R, Alapati S, et al. Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration[J]. Biomaterials, 2016, 111: 103-115. |
23 | Zhang ZC, Nör F, Oh M, et al. Wnt/β-catenin signa-ling determines the vasculogenic fate of postnatal mesenchymal stem cells[J]. Stem Cells, 2016, 34(6): 1576-1587. |
24 | Wang XZ, Jong G, Lin LM, et al. EphB-EphrinB interaction controls odontogenic/osteogenic differen-tiation with calcium hydroxide[J]. J Endod, 2013, 39(10): 1256-1260. |
25 | Groppa E, Brkic S, Uccelli A, et al. EphrinB2/EphB4 signaling regulates non-sprouting angiogenesis by VEGF[J]. EMBO Rep, 2018, 19(5): e45054. |
26 | 杨鑫, 李思洁, 赵玮. Wnt信号通路在调控牙髓干细胞多向分化及炎症损伤修复中的作用[J]. 国际口腔医学杂志, 2018, 45(3): 286-290. |
Yang X, Li SJ, Zhao W. Wnt signaling pathway mediates the dental pulp stem cells in multipotential differentiation and inflammatory microenvironment[J]. Int J Stomatol, 2018, 45(3): 286-290. | |
27 | Qiao YQ, Zhu LS, Cui SJ, et al. Local administration of stem cells from human exfoliated primary teeth attenuate experimental periodontitis in mice[J]. Chin J Dent Res, 2019, 22(3): 157-163. |
28 | Gao XL, Shen ZS, Guan ML, et al. Immunomodulatory role of stem cells from human exfoliated deci-duous teeth on periodontal regeneration[J]. Tissue Eng Part A, 2018, 24(17/18): 1341-1353. |
29 | Yang XT, Ma Y, Guo WH, et al. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration[J]. Theranostics, 2019, 9(9): 2694-2711. |
30 | Mussano F, Genova T, Petrillo S, et al. Osteogenic differentiation modulates the cytokine, chemokine, and growth factor profile of ASCs and SHED[J]. Int J Mol Sci, 2018, 19(5): E1454. |
31 | Yang C, Chen Y, Zhong LW, et al. Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth[J]. Biochem Cell Biol, 2020, 98(3): 415-425. |
32 | Fu XR, Jin LY, Ma P, et al. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine[J]. J Periodontol, 2014, 85(6): 845-851. |
33 | Nowwarote N, Sukarawan W, Pavasant P, et al. Basic fibroblast growth factor regulates phosphate/pyrophosphate regulatory genes in stem cells isolated from human exfoliated deciduous teeth[J]. Stem Cell Res Ther, 2018, 9(1): 345. |
34 | Tu YY, Yang CY, Chen RS, et al. Effects of chlorhe-xidine on stem cells from exfoliated deciduous teeth[J]. J Formos Med Assoc, 2015, 114(1): 17-22. |
35 | Yang X, Zhao Q, Chen YJ, et al. Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 822-832. |
36 | Prahasanti C, Subrata LH, Saskianti T, et al. Combined hydroxyapatite scaffold and stem cell from human exfoliated deciduous teeth modulating alveolar bone regeneration via regulating receptor activator of nuclear factor-κb and osteoprotegerin system[J]. Iran J Med Sci, 2019, 44(5): 415-421. |
37 | Souza DC, Abreu HLV, Oliveira PV, et al. A fast degrading PLLA composite with a high content of functionalized octacalcium phosphate mineral phase induces stem cells differentiation[J]. J Mech Behav Biomed Mater, 2019, 93: 93-104. |
38 | Kitase Y, Sato Y, Ueda K, et al. A novel treatment with stem cells from human exfoliated deciduous teeth for hypoxic-ischemic encephalopathy in neonatal rats[J]. Stem Cells Dev, 2020, 29(2): 63-74. |
39 | Li Y, Yang YY, Ren JL, et al. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats[J]. Stem Cell Res Ther, 2017, 8(1): 198. |
40 | Zhou LL, Liu W, Wu YM, et al. Oral mesenchymal stem/progenitor cells: the immunomodulatory masters[J]. Stem Cells Int, 2020, 2020: 1327405. |
41 | Whiting D, Chung WO, Johnson JD, et al. Characterization of the cellular responses of dental mesenchymal stem cells to the immune system[J]. J Endod, 2018, 44(7): 1126-1131. |
42 | Tunç H, Islam A, Kabadayı H, et al. Evaluation of low-level diode laser irradiation and various irrigant solutions on the biological response of stem cells from exfoliated deciduous teeth[J]. J Photochem Photobiol B, 2019, 191: 156-163. |
43 | Virag P, Hedesiu M, Soritau O, et al. Low-dose radia-tions derived from cone-beam CT induce transient DNA damage and persistent inflammatory reactions in stem cells from deciduous teeth[J]. Dentomaxillofac Radiol, 2019, 48(1): 20170462. |
[1] | 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115. |
[2] | 王家烯,吕鸣樾,袁泉. 黏性骨在口腔组织再生中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 594-602. |
[3] | 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478. |
[4] | 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358. |
[5] | 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250. |
[6] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632. |
[7] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[8] | 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496. |
[9] | 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203. |
[10] | 刘嘉程,孟昭松,李宏捷,隋磊. 卵泡抑素在口腔颌面部发育中的作用及其治疗应用前景[J]. 国际口腔医学杂志, 2021, 48(5): 556-562. |
[11] | 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391-397. |
[12] | 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70. |
[13] | 赵彬彬,仲维剑,马国武. 牙本质作为骨移植材料的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 82-89. |
[14] | 汪是琦,常雅琴,陈斌,谭葆春,泥艳红. 植骨术与植骨联用屏障膜在牙周再生治疗中临床疗效对比的系统评价与Meta分析[J]. 国际口腔医学杂志, 2020, 47(6): 644-651. |
[15] | 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285. |
|