国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (4): 476-482.doi: 10.7518/gjkq.2022067
Zhang Xidan(),Sun Jiyu,Fu Xinliang,Gan Xueqi.()
摘要:
介孔硅酸钙纳米材料(MCSN)是近年来基于传统硅酸钙生物活性材料研发出的新型生物活性材料,具有良好的介孔结构和纳米级粒子直径,具备优秀的生物相容性、生物活性、抗菌性、载药缓释性等生物学性能,还可以通过功能化金属元素修饰对其进行改性,在口腔医学领域具有极大的潜力。MCSN对常见的口腔致病菌具有良好的抗菌性,可以渗入到牙本质小管中,促进牙体硬组织再矿化,在牙体牙髓领域具有广阔的应用前景;此外,MCSN相关的复合支架材料具有良好的成骨活性和改性潜能,在颅颌面修复领域具有广大的应用潜力。本文对MCSN的生物学性能以及在牙体牙髓及颅颌面修复领域的研究进展进行综述,并为未来研究方向提供参考及依据。
中图分类号:
1 | 陈燕活, 安少锋, 高燕. 硅酸钙类盖髓剂生物学性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 459-464. |
Chen YH, An SF, Gao Y. Research progress on the biological properties of calcium silicate-based pulp capping agents[J]. Int J Stomatol, 2018, 45(4): 459-464. | |
2 | Wu CT, Chang J, Fan W. Bioactive mesoporous calcium-silicate nanoparticles with excellent minera-lization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth[J]. J Mater Chem, 2012, 22(33): 16801. |
3 | Huang KH, Wang CY, Chen CY, et al. Incorporation of calcium sulfate dihydrate into a mesoporous calcium silicate/poly‑ε‑caprolactone scaffold to regulate the release of bone morphogenetic protein-2 and accelerate bone regeneration[J]. Biomedicines, 2021, 9(2): 128. |
4 | Huang CY, Huang TH, Kao CT, et al. Mesoporous calcium silicate nanoparticles with drug delivery and odontogenesis properties[J]. J Endod, 2017, 43(1): 69-76. |
5 | Chen YC, Shie MY, Wu YA, et al. Anti-inflammation performance of curcumin-loaded mesoporous calcium silicate cement[J]. J Formos Med Assoc, 2017, 116(9): 679-688. |
6 | 范启航. 纳米介孔钙硅颗粒在抗菌和体外矿化成骨中的作用研究[D]. 武汉: 武汉大学, 2018. |
Fan QH. The role of mesoporous calcium silicate nanoparticles in ex vivo antibacterial activity, mine-ralization and osteogenesis[D]. Wuhan: Wuhan University, 2018. | |
7 | Sun Q, Duan MT, Fan W, et al. Ca-Si mesoporous nanoparticles with the optimal Ag-Zn ratio inhibit the Enterococcus faecalis infection of teeth through dentinal tubule infiltration: an in vitro and in vivo study[J]. J Mater Chem B, 2021, 9(9): 2200-2211. |
8 | Leng DY, Li Y, Zhu J, et al. The antibiofilm activity and mechanism of nanosilver-and nanozinc-incorporated mesoporous calcium-silicate nanoparticles[J]. Int J Nanomedicine, 2020, 15: 3921-3936. |
9 | Zhou YX, Quan GL, Wu QL, et al. Mesoporous silica nanoparticles for drug and gene delivery[J]. Acta Pharm Sin B, 2018, 8(2): 165-177. |
10 | Zheng K, Boccaccini AR. Sol-gel processing of bioactive glass nanoparticles: a review[J]. Adv Colloid Interface Sci, 2017, 249: 363-373. |
11 | Huang KH, Chen YW, Wang CY, et al. Enhanced capability of bone morphogenetic protein 2-loaded mesoporous calcium silicate scaffolds to induce odontogenic differentiation of human dental pulp cells[J]. J Endod, 2018, 44(11): 1677-1685. |
12 | Peng XY, Hu M, Liao F, et al. La-Doped mesoporous calcium silicate/chitosan scaffolds for bone tissue engineering[J]. Biomater Sci, 2019, 7(4): 1565-1573. |
13 | Fan W, Li YY, Sun Q, et al. Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti-Enterococcus faecalis and mineralization properties[J]. J Nanobiotechnology, 2016, 14(1): 72. |
14 | Wang SC, Gu ZR, Wang ZW, et al. Influences of mesoporous magnesium calcium silicate on minera-lization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites[J]. Sci Rep, 2018, 8(1): 174. |
15 | Fan W, Wu DM, Tay FR, et al. Effects of adsorbed and templated nanosilver in mesoporous calcium-si-licate nanoparticles on inhibition of bacteria colonization of dentin[J]. Int J Nanomedicine, 2014, 9: 5217-5230. |
16 | Fan QH, Li YY, Ma TJ, et al. Antibacterial and functional properties enhancement of mesoporous cal-cium-silicate nanoparticles by coupling with quaternary ammonium chloride[J]. Nanosci Nanotechnol Lett, 2017, 9(9): 1338-1345. |
17 | Obata A, Ogasawara T, Kasuga T. Combinatorial effects of inorganic ions on adhesion and proliferation of osteoblast-like cells[J]. J Biomed Mater Res A, 2019, 107(5): 1042-1051. |
18 | Srinath P, Abdul Azeem P, Venugopal Reddy K. Review on calcium silicate-based bioceramics in bone tissue engineering[J]. Int J Appl Ceram Technol, 2020, 17(5): 2450-2464. |
19 | Yu TJ, Wang Y, Cai Q, et al. Efficacy of Ca2+-or PO4 3--conjugated mesoporous silica nanoparticles on dentinal tubule occlusion: an in-vitro assessment[J]. Ann Transl Med, 2020, 8(5): 173. |
20 | Kao CT, Chen YJ, Huang TH, et al. Assessment of the release profile of fibroblast growth factor-2-load mesoporous calcium silicate/poly‑ε‑caprolactone 3D scaffold for regulate bone regeneration[J]. Processes, 2020, 8(10): 1249. |
21 | Liao F, Peng XY, Yang F, et al. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability[J]. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109999. |
22 | Guimarães RS, Rodrigues CF, Moreira AF, et al. Overview of stimuli-responsive mesoporous organosilica nanocarriers for drug delivery[J]. Pharmacol Res, 2020, 155: 104742. |
23 | Kankala RK, Han YH, Na J, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles[J]. Adv Mater, 2020, 32(23): e1907035. |
24 | Xie CL, Li P, Liu Y, et al. Preparation of TiO2 nanotubes/mesoporous calcium silicate composites with controllable drug release[J]. Mater Sci Eng C Mater Biol Appl, 2016, 67: 433-439. |
25 | Jafari S, Derakhshankhah H, Alaei L, et al. Mesoporous silica nanoparticles for therapeutic/diagnostic applications[J]. Biomed Pharmacother, 2019, 109: 1100-1111. |
26 | Zhu YF, Zhu M, He X, et al. Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties[J]. Acta Biomater, 2013, 9(5): 6723-6731. |
27 | Kheiri S, Liu XY, Thompson M. Nanoparticles at biointerfaces: antibacterial activity and nanotoxico-logy[J]. Colloids Surf B Biointerfaces, 2019, 184: 110550. |
28 | Zhu J, Liang RZ, Sun C, et al. Effects of nanosilver and nanozinc incorporated mesoporous calcium-silicate nanoparticles on the mechanical properties of dentin[J]. PLoS One, 2017, 12(8): e0182583. |
29 | Yu CT, Wang FM, Liu YT, et al. Effect of bone morphogenic protein-2-loaded mesoporous strontium substitution calcium silicate/recycled fish gelatin 3D cell-laden scaffold for bone tissue engineering[J]. Processes, 2020, 8(4): 493. |
30 | Fan Y, Huang SS, Jiang JH, et al. Luminescent, me-soporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier[J]. J Colloid Interface Sci, 2011, 357(2): 280-285. |
31 | 罗惟丹, 李明云, 周学东, 等. 纳米羟磷灰石在牙体修复和牙髓治疗领域的应用[J]. 国际口腔医学杂志, 2018, 45(2): 192-198. |
Luo WD, Li MY, Zhou XD, et al. Application of nano-hydroxyapatite in the clinical treatment of oral diseases[J]. Int J Stomatol, 2018, 45(2): 192-198. | |
32 | Zhang ZN, Lin T, Shao HP, et al. Effect of different dopants on porous calcium silicate composite bone scaffolds by 3D gel-printing[J]. Ceram Int, 2020, 46(1): 325-330. |
[1] | 谭永臻,梁新华. 口腔局部麻醉药抗菌机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 74-81. |
[2] | 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394. |
[3] | 高宇天,苏勤. 酸性氧化电位水在根管治疗中的研究与应用[J]. 国际口腔医学杂志, 2023, 50(4): 401-406. |
[4] | 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216. |
[5] | 杨梦瑶,高现灵,邓淑丽. 静电纺丝纳米纤维在牙周再生中的应用[J]. 国际口腔医学杂志, 2023, 50(1): 10-18. |
[6] | 李伟光,吴亚菲,郭淑娟. 无机纳米粒子在牙周病诊疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 724-730. |
[7] | 颜愈佳,邹玲. 生物陶瓷类根管封闭剂的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 578-585. |
[8] | 王路明,曹潇,仵琳悦,李蕴聪,雷波,牛林. 掺锌生物活性玻璃纳米颗粒对复合树脂力学性能影响的实验研究[J]. 国际口腔医学杂志, 2022, 49(4): 404-411. |
[9] | 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340. |
[10] | 陈亮,丁一,孟姝. 宿主调节治疗在牙周病治疗中的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 706-710. |
[11] | 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444. |
[12] | 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477. |
[13] | 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94. |
[14] | 刘彤曦,柯星,杨健. 磁共振成像及其在牙体牙髓专业中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 693-698. |
[15] | 蒋晓鸽,吴家馨,裴锡波. 金属-有机骨架及其复合材料在生物医学领域中的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 552-557. |
|