国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (5): 594-602.doi: 10.7518/gjkq.2023045

• 综述 • 上一篇    下一篇

黏性骨在口腔组织再生中的研究进展

王家烯1(),吕鸣樾2,袁泉2()   

  1. 1.广西医科大学口腔医学院·附属口腔医院牙周黏膜科 南宁 530021
    2.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2022-11-03 修回日期:2023-04-20 出版日期:2023-09-01 发布日期:2023-09-01
  • 通讯作者: 袁泉
  • 作者简介:王家烯,博士,Email:wangjiaxi@gxmu.edu.cn

Research progress on sticky bone in oral tissue regeneration

Wang Jiaxi1(),Mingyue Lü2,Yuan Quan2()   

  1. 1.Dept. of Perio-dontology and Oral Medicine, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
    2.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-11-03 Revised:2023-04-20 Online:2023-09-01 Published:2023-09-01
  • Contact: Quan Yuan

摘要:

缺损牙槽骨的重建对恢复口腔颌面部美观及功能有重要意义,也是组织再生的难点之一。黏性骨是一种由血浆制品与骨替代品混合制成的复合生物材料。随着基础研究的深入和制备技术的改进,不同制作方法的黏性骨相继出现,并应用于牙槽骨重建等口腔组织再生中,取得了较为肯定的软硬组织再生效果。本文就黏性骨的演变、制备方法、自身特点以及口腔临床应用进展进行综述,以期能为黏性骨的临床应用提供参考。

关键词: 黏性骨, 血浆制品, 骨替代品, 组织再生

Abstract:

The reconstruction of the defective alveolar bone is of great significance to restore the oral and maxillofacial aesthetics and function, and is also one of the difficulties in tissue regeneration. Sticky bone is a composite biomaterial made from a mixture of plasma products and bone substitutes. With the progress of basic research and the improvement of preparation techniques, sticky bone made from different production methods has been successively applied in the oral tissue regeneration including alveolar bone reconstruction, and has achieved positive effect on soft and hard tissue regeneration. We reviewed the evolution, preparation method, characteristics, and the clinical progress of sticky bone, aiming to promote the application of sticky bone in clinical work.

Key words: sticky bone, plasma products, bone substitutes, tissue regeneration

中图分类号: 

  • R 78

图1

黏性骨的制作过程A:离心后的AFG管(白色盖子)和CGF管(红色盖子); B:液态的AFG; C:黏性骨。"

1 Jepsen S, Schwarz F, Cordaro L, et al. Regeneration of alveolar ridge defects. Consensus report of group 4 of the 15th European Workshop on Periodontology on Bone Regeneration[J]. J Clin Periodontol, 2019, 46(): 277-286.
2 Sohn DS, Huang B, Kim J, et al. Utilization of auto-logous concentrated growth factors (CGF) enriched bone graft matrix (Sticky bone) and CGF-enriched fifibrin membrane in implant dentistry[J]. J Implant Adv Clin Dent, 2015, 7(10): 11-18.
3 Mourão CF, Valiense H, Melo ER, et al. Obtention of injectable platelets rich-fibrin (i-PRF) and its polymerization with bone graft: technical note[J]. Rev Col Bras Cir, 2015, 42(6): 421-423.
4 Al-Hamed FS, Mahri M, Al-Waeli H, et al. Regenerative effect of platelet concentrates in oral and craniofacial regeneration[J]. Front Cardiovasc Med, 2019, 6: 126.
5 Trybek G, Rydlińska J, Aniko-Włodarczyk M, et al. Effect of platelet-rich fibrin application on non-infectious complications after surgical extraction of impacted mandibular third molars[J]. Int J Environ Res Public Health, 2021, 18(16): 8249.
6 Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF)[J]. Trends Biotechnol, 2009, 27(3): 158-167.
7 Marx RE, Carlson ER, Eichstaedt RM, et al. Platelet-rich plasma: growth factor enhancement for bone grafts[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 85(6): 638-646.
8 Oneto P, Zubiry PR, Schattner M, et al. Anticoagulants interfere with the angiogenic and regenerative responses mediated by platelets[J]. Front Bioeng Biotechnol, 2020, 8: 223.
9 Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part Ⅰ: technological concepts and evolution[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101(3): e37-e44.
10 Lourenço ES, Alves GG, de Lima Barbosa R, et al. Effects of rotor angle and time after centrifugation on the biological in vitro properties of platelet rich fibrin membranes[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(1): 60-68.
11 Lourenço ES, Mourão CFAB, Leite PEC, et al. The in vitro release of cytokines and growth factors from fibrin membranes produced through horizontal centrifugation[J]. J Biomed Mater Res A, 2018, 106(5): 1373-1380.
12 Rodella LF, Favero G, Boninsegna R, et al. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction[J]. Microsc Res Tech, 2011, 74(8): 772-777.
13 Varela HA, Souza JCM, Nascimento RM, et al. Injectable platelet rich fibrin: cell content, morpholo-gical, and protein characterization[J]. Clin Oral Investig, 2019, 23(3): 1309-1318.
14 Farshidfar N, Amiri MA, Jafarpour D, et al. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: from bench to chairside[J]. Biomater Adv, 2022, 134: 112557.
15 Mu ZX, Chen KW, Yuan S, et al. Gelatin nanoparticle-injectable platelet-rich fibrin double network hydrogels with local adaptability and bioactivity for enhanced osteogenesis[J]. Adv Healthc Mater, 2020, 9(5): e1901469.
16 Bozkurt E, Uslu MÖ. Evaluation of the effects of platelet-rich fibrin, concentrated growth factors, and autologous fibrin glue application on wound healing following gingivectomy and gingivoplasty operations: a randomized controlled clinical trial[J]. Quintessence Int, 2022, 53(4): 328-341.
17 Leighton Y, Weber B, Rosas E, et al. Autologous fibrin glue with collagen carrier during maxillary sinus lift procedure[J]. J Craniofac Surg, 2019, 30(3): 843-845.
18 Yuan S, Li QS, Chen KW, et al. Ridge preservation applying a novel hydrogel for early angiogenesis and osteogenesis evaluation: an experimental study in canine[J]. J Biol Eng, 2021, 15(1): 19.
19 Thanasrisuebwong P, Kiattavorncharoen S, Surarit R, et al. Red and yellow injectable platelet-rich fibrin demonstrated differential effects on periodontal ligament stem cell proliferation, migration, and osteogenic differentiation[J]. Int J Mol Sci, 2020, 21(14): 5153.
20 Wang MX, Zhang XQ, Li YZ, et al. Lateral ridge augmentation with guided bone regeneration using particulate bone substitutes and injectable platelet-rich fibrin in a digital workflow: 6 month results of a prospective cohort study based on cone-beam computed tomography data[J]. Materials, 2021, 14(21): 6430.
21 Csönge L, Bozsik Á, Tóth-Bagi Z, et al. Regenerative medicine: characterization of human bone matrix gelatin (BMG) and folded platelet-rich fibrin (FPRF) membranes alone and in combination (sticky bone)[J]. Cell Tissue Bank, 2021, 22(4): 711-717.
22 Temmerman A, Vandessel J, Castro A, et al. The use of leucocyte and platelet-rich fibrin in socket ma-nagement and ridge preservation: a split-mouth, randomized, controlled clinical trial[J]. J Clin Periodontol, 2016, 43(11): 990-999.
23 Duan DH, Wang EB, Zhang JY, et al. A three-in-one alveolar process reconstruction protocol for maxillary molar sites with severe residual bone height deficiency: a proof-of-concept pilot study[J]. Clin Implant Dent Relat Res, 2022, 24(4): 414-423.
24 Gheno E, Alves GG, Ghiretti R, et al. “sticky bone”preparation device: a pilot study on the release of cytokines and growth factors[J]. Materials (Basel), 2022, 15(4): 1474.
25 Qi L, Liu L, Hu Y, et al. Concentrated growth factor promotes gingival regeneration through the AKT/Wnt/β-catenin and YAP signaling pathways[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1): 920-932.
26 Blatt S, Thiem DGE, Pabst A, et al. Does platelet-rich fibrin enhance the early angiogenetic potential of different bone substitute materials? An in vitro and in vivo analysis[J]. Biomedicines, 2021, 9(1): 61.
27 Mu Z, He Q, Xin L, et al. Effects of injectable platelet rich fibrin on bone remodeling in combination with DBBM in maxillary sinus elevation: a rando-mized preclinical study[J]. Am J Transl Res, 2020, 12(11): 7312-7325.
28 Scarano A, Inchingolo F, Murmura G, et al. Three-dimensional architecture and mechanical properties of bovine bone mixed with autologous platelet li-quid, blood, or physiological water: an in vitro study[J]. Int J Mol Sci, 2018, 19(4): 1230.
29 Kyyak S, Blatt S, Schiegnitz E, et al. Activation of human osteoblasts via different bovine bone substitute materials with and without injectable platelet rich fibrin in vitro [J]. Front Bioeng Biotechnol, 2021, 9: 599224.
30 Kyyak S, Blatt S, Pabst A, et al. Combination of an allogenic and a xenogenic bone substitute material with injectable platelet-rich fibrin-a comparative in vitro study[J]. J Biomater Appl, 2020, 35(1): 83-96.
31 Kızıltoprak M, Uslu MÖ. Comparison of the effects of injectable platelet-rich fibrin and autologous fibrin glue applications on palatal wound healing: a randomized controlled clinical trial[J]. Clin Oral Investig, 2020, 24(12): 4549-4561.
32 Zhu SJ, Choi BH, Jung JH, et al. A comparative histologic analysis of tissue-engineered bone using platelet-rich plasma and platelet-enriched fibrin glue[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 102(2): 175-179.
33 Jasmine S, Thangavelu A, Krishnamoorthy R, et al. Architectural and ultrastructural variations of human leukocyte-rich platelet-rich fibrin and injec-table platelet-rich fibrin[J]. J Microsc Ultrastruct, 2021, 9(2): 76-80.
34 Wend S, Kubesch A, Orlowska A, et al. Reduction of the relative centrifugal force influences cell number and growth factor release within injectable PRF-based matrices[J]. J Mater Sci Mater Med, 2017, 28(12): 188.
35 Choukroun J, Ghanaati S. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients’ own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept[J]. Eur J Trauma Emerg Surg, 2018, 44(1): 87-95.
36 Kargarpour Z, Panahipour L, Miron RJ, et al. Fibri-nogen concentrations in liquid PRF using various centrifugation protocols[J]. Molecules, 2022, 27(7): 2043.
37 Barbu HM, Iancu SA, Rapani A, et al. Guided bone regeneration with concentrated growth factor enriched bone graft matrix (sticky bone) vs. bone-shell technique in horizontal ridge augmentation: a retrospective study[J]. J Clin Med, 2021, 10(17): 3953.
38 Chandra R, Shivateja K, Reddy A. Autogenous bone ring transplant vs autologous growth factor enriched bone graft matrix in extraction sockets with deficient buccal bone: a comparative clinical study[J]. Int J Oral Maxillofac Implants, 2019, 34(6): 1424-1433.
39 Elian N, Cho SC, Froum S, et al. A simplified so-cket classification and repair technique[J]. Pract Proced Aesthet Dent, 2007, 19(2): 99-104.
40 Wang MX, Zhang XQ, Li YZ, et al. The influence of different guided bone regeneration procedures on the contour of bone graft after wound closure: a re-trospective cohort study[J]. Materials (Basel), 2021, 14(3): 583.
41 Thanasrisuebwong P, Kiattavorncharoen S, Deeb GR, et al. Implant site preparation application of injectable platelet-rich fibrin for vertical and horizontal bone regeneration: a clinical report[J]. J Oral Implantol, 2022, 48(1): 43-50.
42 Joshi CP, D’Lima CB, Karde PA, et al. Ridge augmentation using sticky bone: a combination of human tooth allograft and autologous fibrin glue[J]. J Indian Soc Periodontol, 2019, 23(5): 493-496.
43 Dayashankara Rao JK, Bhatnagar A, Pandey R, et al. A comparative evaluation of iliac crest bone graft with and without injectable and advanced platelet rich fibrin in secondary alveolar bone grafting for cleft alveolus in unilateral cleft lip and palate patients: a randomized prospective study[J]. J Stomatol Oral Maxillofac Surg, 2021, 122(3): 241-247.
44 Sureshbabu NM, Ranganath A, Jacob B. Concentra-ted growth factor-surgical management of large periapical lesion using a novel platelet concentrate in combination with bone graft[J]. Ann Maxillofac Surg, 2020, 10(1): 246-250.
45 Rupawala TA, Patel SM, Shah NH, et al. Efficacy of sticky bone as a novel autologous graft for mandibular third molar extraction socket healing-an evaluative study[J]. Ann Maxillofac Surg, 2020, 10(2): 335-343.
46 Ponte J, Pérez-Guerrero J, Aragão F, et al. Histomorphometric evaluation of human extraction sockets treated with autologous fibrin, sticky bone or biphasic calcium phosphate[J]. Acta Odontol Latinoam, 2021, 34(3): 271-281.
47 Soni R, Priya A, Yadav H, et al. Bone augmentation with sticky bone and platelet-rich fibrin by ridge-split technique and nasal floor engagement for immediate loading of dental implant after extracting impacted canine[J]. Natl J Maxillofac Surg, 2019, 10(1): 98-101.
48 Choukroun J, Diss A, Simonpieri A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part Ⅴ: histologic evaluations of PRF effects on bone allograft maturation in sinus lift[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endo-dontology, 2006, 101(3): 299-303.
49 Kapa BP, N K S, G V G, et al. Coronally advanced flap combined with sticky bone and i-PRF-coated collagen membrane to treat single maxillary gingival recessions: case series[J]. Clin Adv Periodontics, 2022, 12(3): 147-151.
50 Xu M, Sun XY, Xu JG. Periodontally accelerated osteogenic orthodontics with platelet-rich fibrin in an adult patient with periodontal disease: a case report and review of literature[J]. World J Clin Cases, 2021, 9(6): 1367-1378.
[1] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[2] 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358.
[3] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[4] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[5] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[6] 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391-397.
[7] 汪是琦,常雅琴,陈斌,谭葆春,泥艳红. 植骨术与植骨联用屏障膜在牙周再生治疗中临床疗效对比的系统评价与Meta分析[J]. 国际口腔医学杂志, 2020, 47(6): 644-651.
[8] 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285.
[9] 孙兆泽,刘双,李纾. 神经导向分子及其在口腔组织再生中的作用[J]. 国际口腔医学杂志, 2019, 46(6): 680-686.
[10] 贾婷婷,颜世果. 特异性AT序列结合蛋白2在颌面部发育及牙周组织再生中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 320-325.
[11] 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54.
[12] 田江雪,莫龙义,贾小玥,刘程程,徐欣. 转化生长因子β在牙周炎发生发展中的作用及其机制[J]. 国际口腔医学杂志, 2018, 45(5): 553-559.
[13] 林云锋, 李松航. DNA折纸技术在干细胞领域应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 249-254.
[14] 刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民. 牙龈干细胞生物学潜能的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 55-58.
[15] 关巍, 汪昌宁. 脱细胞异体真皮基质在牙周病学中的应用[J]. 国际口腔医学杂志, 2017, 44(6): 669-673.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[10] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .