国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (6): 666-672.doi: 10.7518/gjkq.2018.06.008

• 材料学专栏 • 上一篇    下一篇

天然支架材料在牙髓组织工程再生中的研究进展

李龙飚,汪成林,叶玲()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2017-12-11 修回日期:2018-05-23 出版日期:2018-11-01 发布日期:2018-11-15
  • 通讯作者: 叶玲
  • 作者简介:李龙飚,学士,Email: 1094162752@qq.com
  • 基金资助:
    科学技术部国际合作专项基金(2014DFA31990)

Research progress on natural scaffold in the regeneration of dental pulp tissue engineering

Longbiao Li,Chenglin Wang,Ling Ye()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-12-11 Revised:2018-05-23 Online:2018-11-01 Published:2018-11-15
  • Contact: Ling Ye
  • Supported by:
    This study was supported by Special Fund for International Cooperation of the Ministry of Science and Technology(2014DFA31990)

摘要:

组织工程为牙髓再生带来了新的可能性,支架材料在其中扮演着重要作用,受到了越来越多的关注。天然支架材料是指从动植物组织中提取的可降解材料,其特点是与细胞外基质相似度高,或本身就是细胞外基质的组成部分,通常具有良好的生物活性、亲水性、材料与细胞界面相容性。目前,进入牙髓组织工程动物实验或临床应用研究的支架材料皆为天然支架材料,本文就牙髓组织工程再生中各种天然支架材料的分类、优缺点及应用等研究进展作一综述。

关键词: 牙髓组织工程, 牙髓再生, 支架材料

Abstract:

Tissue engineering has brought new possibilities for dental pulp regeneration. Scaffold materials play an important role in it, and have attracted more and more attention. Natural scaffold material is a biodegradable material extracted from animal or plant tissue, which is characterized by high similarity with extracellular matrix, or itself as part of extracellular matrix, usually with good bioactivity, hydrophilicity, and compatibility of material and cell interface. At present, the scaffolds for the research of dental pulp tissue engineering animal experiment or clinical application are all natural scaffold materials. This article reviews the research progress on the classification, advantages and disadvantages and application of various natural scaffold materials in the regeneration of dental pulp tissue engineering.

Key words: dental pulp tissue engineering, pulp regeneration, scaffold

中图分类号: 

  • R318.08
[1] Audet J . Stem cell bioengineering for regenerative medicine[J]. Expert Opin Biol Ther, 2004,4(5):631-644.
doi: 10.1517/14712598.4.5.631
[2] Makris EA, Gomoll AH, Malizos KN , et al. Repair and tissue engineering techniques for articular car-tilage[J]. Nat Rev Rheumatol, 2015,11(1):21-34.
doi: 10.1038/nrrheum.2014.157 pmid: 4629810
[3] Galler KM , D’Souza RN, Hartgerink JD, et al. Scaf-folds for dental pulp tissue engineering[J]. Adv Dent Res, 2011,23(3):333-339.
doi: 10.1177/0022034511405326 pmid: 21677088
[4] Wang J, Ma H, Jin X , et al. The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells[J]. Biomaterials, 2011,32(31):7822-7830.
doi: 10.1016/j.biomaterials.2011.04.034 pmid: 3159766
[5] Sueyama Y, Kaneko T, Ito T , et al. Implantation of endothelial cells with mesenchymal stem cells ac-celerates dental pulp tissue regeneration/healing in pulpotomized rat molars[J]. J Endod, 2017,43(6):943-948.
doi: 10.1016/j.joen.2017.01.035 pmid: 28416308
[6] Galler KM, Cavender A, Yuwono V , et al. Self-as-sembling peptide amphiphile nanofibers as a scaf-fold for dental stem cells[J]. Tissue Eng Part A, 2008,14(12):2051-2058.
doi: 10.1089/ten.tea.2007.0413 pmid: 18636949
[7] Nakashima M, Iohara K, Murakami M , et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study[J]. Stem Cell Res Ther, 2017,8(1):61.
doi: 10.1186/s13287-017-0506-5 pmid: 5345141
[8] 郑颖, 张建鹏, 王劲松 , 等. 牙髓组织再生中Ⅰ型胶原支架最佳浓度的体外研究[J]. 北京口腔医学, 2014,22(6):311-315.
Zheng Y, Zhang JP, Wang JS , et al. In vitro study of the optimal concentration of typeⅠcollagen scaffold in dental pulp regeneration[J]. Beijing J Stomatol, 2014,22(6):311-315.
[9] 田卫东, 李声伟, 邓楠 , 等. 胶原与羟基磷灰石复合人工骨的实验研究[J]. 中国口腔种植学杂志, 1999,4(1):7-11, 16.
Tian WD, Li SW, Deng N , et al. Experimental study for the composite of hydroxyapatite-collagen as a bone substitute[J]. Chin J Oral Implant, 1999,4(1):7-11, 16.
[10] Coyac BR, Chicatun F, Hoac B , et al. Mineralization of dense collagen hydrogel scaffolds by human pulp cells[J]. J Dent Res, 2013,92(7):648-654.
doi: 10.1177/0022034513488599 pmid: 23632809
[11] Niu LN, Sun JQ, Li QH , et al. Intrafibrillar-silicified collagen scaffolds enhance the osteogenic capacity of human dental pulp stem cells[J]. J Dent, 2014,42(7):839-849.
doi: 10.1016/j.jdent.2014.03.016 pmid: 24705068
[12] Kwon YS, Lee SH, Hwang YC , et al. Behaviour of human dental pulp cells cultured in a collagen hy-drogel scaffold cross-linked with cinnamaldehyde[J]. Int Endod J, 2017,50(1):58-66.
doi: 10.1111/iej.12592 pmid: 26650820
[13] Zou H, Wang G, Song F , et al. Investigation of human dental pulp cells on a potential injectable poly(lactic-co-glycolic acid) microsphere scaffold[J]. J Endod, 2017,43(5):745-750.
doi: 10.1016/j.joen.2016.12.019 pmid: 28292602
[14] Yindeedej W, Manotham K, Chattong S , et al. An-giogenesis induction using dental pulp stem cells, a collagen scaffold seeded in pulp chamber of endo-dontically treated teeth and subcutaneously tran-splanted into immunocompromised mice[J]. Int J Stem Cell Res Transplant, 2016,4(9):251-255.
[15] Prescott RS, Alsanea R, Fayad MI , et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice[J]. J Endod, 2008,34(4):421-426.
doi: 10.1016/j.joen.2008.02.005 pmid: 18358888
[16] Ostby BN . The role of the blood clot in endodontic therapy. An experimental histologic study[J]. Acta Odontol Scand, 1961,19:324-353.
doi: 10.3109/00016356109043395 pmid: 14482575
[17] Diogenes A, Henry MA, Teixeira FB , et al. An update on clinical regenerative endodontics[J]. Endod Top, 2013,28(1):2-23.
doi: 10.1111/etp.12040
[18] Saoud TM, Martin G, Chen YH , et al. Treatment of mature permanent teeth with necrotic pulps and apical periodontitis using regenerative endodontic procedures: a case series[J]. J Endod, 2016,42(1):57-65.
doi: 10.1016/j.joen.2015.09.015 pmid: 26525552
[19] 孙洁, 张剑明, 李彦秋 . 富血小板纤维蛋白超微结构的观察与探讨[J]. 口腔医学研究, 2010,26(1):98-101.
Sun J, Zhang JM, Li YQ . Observation and discussion on ultrastructure of platelet rich fibrin[J]. J Oral Sci Res, 2010,26(1):98-101.
[20] Eppley BL, Woodell JE, Higgins J . Platelet quan-tification and growth factor analysis from platelet-rich plasma: implications for wound healing[J]. Plast Reconstr Surg, 2004,114(6):1502-1508.
[21] Cieslik-Bielecka A, Dohan Ehrenfest DM , Lubko-wska A, et al. Microbicidal properties of leukocyte- and platelet-rich plasma/fibrin (L-PRP/L-PRF): new perspectives[J]. J Biol Regul Homeost Agents, 2012,26(2 Suppl 1):43S-52S.
doi: 10.2174/138920112800624373 pmid: 23648198
[22] Miron RJ, Fujioka-Kobayashi M, Hernandez M , et al. Injectable platelet rich fibrin (i-PRF): opportuni-ties in regenerative dentistry[J]. Clin Oral Investig, 2017,21(8):2619-2627.
doi: 10.1007/s00784-017-2063-9
[23] Priya MH, Tambakad PB, Naidu J . Pulp and perio-dontal regeneration of an avulsed permanent mature incisor using platelet-rich plasma after delayed re-plantation: a 12-month clinical case study[J]. J Endod, 2016,42(1):66-71.
doi: 10.1016/j.joen.2015.07.016 pmid: 26409809
[24] Torabinejad M, Milan M, Shabahang S , et al. Histo-logic examination of teeth with necrotic pulps and periapical lesions treated with 2 scaffolds: an animal investigation[J]. J Endod, 2015,41(6):846-852.
doi: 10.1016/j.joen.2015.01.026
[25] Stambolsky C, Rodríguez-Benítez S, Gutiérrez-Pérez JL , et al. Histologic characterization of regenerated tissues after pulp revascularization of immature dog teeth with apical periodontitis using tri-antibiotic paste and platelet-rich plasma[J]. Arch Oral Biol, 2016,71:122-128.
doi: 10.1016/j.archoralbio.2016.07.007 pmid: 27491082
[26] Shivashankar VY, Johns DA, Maroli RK , et al. Com-parison of the effect of PRP, PRF and induced blee-ding in the revascularization of teeth with necrotic pulp and open apex: a triple blind randomized clinical trial[J]. J Clin Diagn Res, 2017, 11(6): ZC34-ZC39.
[27] Narang I, Mittal N, Mishra N . A comparative evalua-tion of the blood clot, platelet-rich plasma, and plate-let-rich fibrin in regeneration of necrotic immature permanent teeth: a clinical study[J]. Contemp Clin Dent, 2015,6(1):63-68.
doi: 10.4103/0976-237X.149294
[28] Del Fabbro M, Lolato A, Bucchi C , et al. Autologous platelet concentrates for pulp and dentin regenera-tion: a literature review of animal studies[J]. J Endod, 2016,42(2):250-257.
doi: 10.1016/j.joen.2015.10.012 pmid: 26631301
[29] 叶芬, 尹玉姬, 孙光洁 , 等. 壳聚糖支架在组织工程中的应用[J]. 功能材料, 2002,33(5):459-461.
Ye F, Yin YJ, Sun GJ , et al. Application of chitosan scaffold in tissue engineering[J]. J Funct Mater, 2002,33(5):459-461.
[30] Li F, Liu X, Zhao S , et al. Porous chitosan bilayer membrane containing TGF-β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model[J]. Dent Mater, 2014,30(2):172-181.
doi: 10.1016/j.dental.2013.11.005 pmid: 24332410
[31] Farea M, Husein A, Halim AS , et al. Synergistic effects of chitosan scaffold and TGFβ1 on the proli-feration and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth[J]. Arch Oral Biol, 2014,59(12):1400-1411.
doi: 10.1016/j.archoralbio.2014.08.015
[32] Soares DG, Rosseto HL, Scheffel DS , et al. Odon-togenic differentiation potential of human dental pulp cells cultured on a calcium-aluminate enriched chitosan-collagen scaffold[J]. Clin Oral Investig, 2017,21(9):2827-2839.
doi: 10.1007/s00784-017-2085-3 pmid: 28281011
[33] 肖芳, 柳毅, 徐高丽 , 等. 透明质酸支架材料诱导成骨的研究进展[J]. 口腔医学研究, 2016,32(9):997-999.
Xiao F, Liu Y, Xu GL , et al. Research progress in hyaluronic acid scaffold induced osteogenesis[J]. J Oral Sci Res, 2016,32(9):997-999.
[34] Zou X, Li H, Chen L , et al. Stimulation of porcine bone marrow stromal cells by hyaluronan, dexame-thasone and rhBMP-2[J]. Biomaterials, 2004,25(23):5375-5385.
doi: 10.1016/j.biomaterials.2003.12.041 pmid: 15130722
[35] 田亚菲, 刘毅 . 脂肪组织工程中透明质酸支架的研究进展[J]. 医学综述, 2016,22(2):213-216.
doi: 10.3969/j.issn.1006-2084.2016.02.002
Tian YF, Liu Y . Research progress of hyaluronic acid scaffolds in adipose tissue engineering[J]. Med Recapitul, 2016,22(2):213-216.
doi: 10.3969/j.issn.1006-2084.2016.02.002
[36] Ferroni L, Gardin C, Sivolella S , et al. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue[J]. Int J Mol Sci, 2015,16(3):4666-4681.
doi: 10.3390/ijms16034666 pmid: 25739081
[37] Chrepa V, Austah O, Diogenes A . Evaluation of a commercially available hyaluronic acid hydrogel (restylane) as injectable scaffold for dental pulp re-generation: an in vitro evaluation[J]. J Endod, 2017,43(2):257-262.
doi: 10.1016/j.joen.2016.10.026 pmid: 28041686
[38] Inuyama Y, Kitamura C, Nishihara T , et al. Effects of hyaluronic acid sponge as a scaffold on odonto-blastic cell line and amputated dental pulp[J]. J Bio-med Mater Res Part B Appl Biomater, 2010,92(1):120-128.
doi: 10.1002/jbm.b.31497 pmid: 19802830
[39] 朱超, 蒋欣泉, 张志愿 . 丝蛋白作为骨组织工程支架材料的研究进展[J]. 国际口腔医学杂志, 2010,37(5):541-543.
Zhu C, Jiang XQ, Zhang ZY . Research progress of silk protein as scaffold material for bone tissue engineering[J]. Int J Stomatol, 2010,37(5):541-543.
[40] Yang JW, Zhang YF, Sun ZY , et al. Dental pulp tissue engineering with bFGF-incorporated silk fi-broin scaffolds[J]. J Biomater Appl, 2015,30(2):221-229.
doi: 10.1177/0885328215577296 pmid: 25791684
[41] Ravindran S, Huang CC, George A . Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs[J]. Front Physiol, 2014,4:395.
doi: 10.3389/fphys.2013.00395
[42] Tran HLB, Nguyen MTN, Doan VN . Fabrication and evaluation of human dentin as scaffold for dental pulp stem cells[J]. Tissue Eng Regen Med, 2015,12(4):222-230.
doi: 10.1007/s13770-014-0103-y
[43] Song JS, Takimoto K, Jeon M , et al. Decellularized human dental pulp as a scaffold for regenerative endodontics[J]. J Dent Res, 2017,96(6):640-646.
doi: 10.1177/0022034517693606 pmid: 28196330
[1] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[2] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[3] 覃思文,廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282.
[4] 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26.
[5] 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197.
[6] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[7] 易芳,王斯任,褚衍昊,卢燕勤. 骨组织工程支架材料修复牙槽嵴裂的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 603-610.
[8] 罗惟丹, 李明云, 周学东, 程磊. 纳米羟磷灰石在牙体修复和牙髓治疗领域的应用[J]. 国际口腔医学杂志, 2018, 45(2): 192-198.
[9] 雷期音, 陈柯. 年轻恒牙牙髓再生的临床应用进展[J]. 国际口腔医学杂志, 2017, 44(3): 267-272.
[10] 杨懋彬1 曾倩2. 再生牙髓病学——牙髓再生的新方向[J]. 国际口腔医学杂志, 2016, 43(5): 495-499.
[11] 李州,许庆安,. 干细胞和支架与牙髓再生及其血运重建[J]. 国际口腔医学杂志, 2016, 43(3): 298-302.
[12] 贺露 郭俊 杨健. 再血管化和牙组织工程化牙髓再生的研究进展[J]. 国际口腔医学杂志, 2015, 42(4): 485-491.
[13] 李蕾, 乔祥晨 崔彩云, 郭维华, 田卫东, . 光引发聚合改性明胶用于牙组织工程的可能性初探[J]. 国际口腔医学杂志, 2015, 42(3): 265-268.
[14] 郭天奇,周延民,赵静辉,储顺礼,孙千月,罗雯静,马珊珊. 富血小板血纤蛋白与其他生物材料联合用于牙周组织修复[J]. 国际口腔医学杂志, 2015, 42(2): 231-236.
[15] 雷港综述 张光东 于金华审校. 牙髓再生的研究进展[J]. 国际口腔医学杂志, 2011, 38(3): 292-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .