国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (2): 192-197.doi: 10.7518/gjkq.2021029

• 综述 • 上一篇    下一篇

水凝胶用于牙髓再生的研究进展

曹春玲(),韩冰,王晓燕()   

  1. 北京大学口腔医学院·口腔医院牙体牙髓科 国家口腔疾病临床研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室 北京 100081
  • 收稿日期:2020-07-02 修回日期:2020-11-16 出版日期:2021-03-01 发布日期:2021-03-17
  • 通讯作者: 王晓燕
  • 作者简介:曹春玲,博士,Email: cclfjlc@163.com
  • 基金资助:
    国家自然科学基金(81771061);国家自然科学基金(81400562)

Research progress on hydrogels for pulp regeneration

Cao Chunling(),Han Bing,Wang Xiaoyan()   

  1. Dept. of Cariology and Endodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2020-07-02 Revised:2020-11-16 Online:2021-03-01 Published:2021-03-17
  • Contact: Xiaoyan Wang
  • Supported by:
    National Natural Science Foundation of China(81771061);National Natural Science Foundation of China(81400562)

摘要:

水凝胶是一种柔软且生物相容性良好的高分子网络体系,可以作为组织工程研究中的支架材料。牙髓再生是运用组织工程学的原理,将牙髓干细胞在体外培养后植入生物相容性良好且可以被吸收降解的生物支架上,诱导牙髓干细胞形成牙髓-牙本质复合体和类牙髓样组织。水凝胶支架在牙髓再生中发挥着模拟微环境、传递信号分子等重要作用,具有良好的应用前景。本文就不同成分、性质的水凝胶用于牙髓再生的研究进展进行综述。

关键词: 水凝胶, 支架, 牙髓再生, 组织工程

Abstract:

Hydrogel is a soft, biocompatible polymer network system that can be used as a scaffold in tissue engineering. Using the principles of tissue engineering, dental pulp stem cells cultured in vitro can be implanted into biocompatible, degradable scaffolds, and induced to form pulp-dentin complex and dental pulp-like tissue. Hydrogel scaffolds simulate the extracellular microenvironment and transmit signal molecules, representing a promising material for pulp regeneration. This study reviews the applications of hydrogels with different compositions and properties for pulp regeneration.

Key words: hydrogel, scaffold, pulp regeneration, tissue engineering

中图分类号: 

  • R782.2
[1] Moshaverinia A, Chen C, Akiyama K, et al. Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study[J]. J Mater Sci Mater Med, 2012,23(12):3041-3051.
doi: 10.1007/s10856-012-4759-3 pmid: 22945383
[2] Lee KY, Mooney DJ. Alginate: properties and biomedical applications[J]. Prog Polym Sci, 2012,37(1):106-126.
[3] Dobie K, Smith G, Sloan AJ, et al. Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro[J]. Connect Tissue Res, 2002,43(2/3):387-390.
[4] Erisken C, Kalyon DM, Zhou J, et al. Viscoelastic properties of dental pulp tissue and ramifications on biomaterial development for pulp regeneration[J]. J Endod, 2015,41(10):1711-1717.
[5] Piva E, Silva AF, Nör JE. Functionalized scaffolds to control dental pulp stem cell fate[J]. J Endod, 2014,40(4 Suppl):S33-S40.
doi: 10.1016/j.joen.2014.01.013 pmid: 24698691
[6] 胡杨, 余小月, 但卫华, 等. 胶原基水凝胶的制备、结构性能表征及其在生物医学中的应用[J]. 功能材料, 2017,48(1):1038-1046.
Hu Y, Yu XY, Dan WH, et al. Preparation, characte-rization and biomedical applications of collagen ba-sed hydrogels[J]. J Funct Mater, 2017,48(1):1038-1046.
[7] Yang CL, Hillas PJ, Báez JA, et al. The application of recombinant human collagen in tissue engineering[J]. BioDrugs, 2004,18(2):103-119.
[8] Rosa V, Zhang Z, Grande RH, et al. Dental pulp tissue engineering in full-length human root canals[J]. J Dent Res, 2013,92(11):970-975.
pmid: 24056227
[9] Yuan L, Li B, Yang JR, et al. Effects of composition and mechanical property of injectable collagen Ⅰ/Ⅱ composite hydrogels on chondrocyte behaviors[J]. Tissue Eng Part A, 2016,22(11/12):899-906.
[10] Suzuki T, Lee CH, Chen M, et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration[J]. J Dent Res, 2011,90(8):1013-1018.
doi: 10.1177/0022034511408426
[11] Khetan S, Guvendiren M, Legant WR, et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels[J]. Nat Mater, 2013,12(5):458-465.
doi: 10.1038/nmat3586 pmid: 23524375
[12] Darr A, Calabro A. Synjournal and characterization of tyramine-based hyaluronan hydrogels[J]. J Mater Sci Mater Med, 2009,20(1):33-44.
doi: 10.1007/s10856-008-3540-0 pmid: 18668211
[13] Lambricht L, De Berdt P, Vanacker J, et al. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla[J]. Dent Mater, 2014,30(12):e349-e361.
[14] Chrepa V, Austah O, Diogenes A. Evaluation of a commercially available hyaluronic acid hydrogel (restylane) as injectable scaffold for dental pulp regeneration: an in vitro evaluation[J]. J Endod, 2017,43(2):257-262.
pmid: 28041686
[15] Shrestha S, Torneck CD, Kishen A. Dentin conditioning with bioactive molecule releasing nanoparticle system enhances adherence, viability, and diffe-rentiation of stem cells from apical papilla[J]. J Endod, 2016,42(5):717-723.
[16] Shrestha S, Diogenes A, Kishen A. Temporal-controlled dexamethasone releasing chitosan nanoparticle system enhances odontogenic differentiation of stem cells from apical papilla[J]. J Endod, 2015,41(8):1253-1258.
doi: 10.1016/j.joen.2015.03.024 pmid: 25956605
[17] Park SJ, Li ZZ, Hwang IN, et al. Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells[J]. J Endod, 2013,39(8):1001-1007.
pmid: 23880267
[18] Palma PJ, Ramos JC, Martins JB, et al. Histologic evaluation of regenerative endodontic procedures with the use of chitosan scaffolds in immature dog teeth with apical periodontitis[J]. J Endod, 2017,43(8):1279-1287.
doi: 10.1016/j.joen.2017.03.005 pmid: 28577961
[19] Asghari Sana F, Çapkın Yurtsever M, Kaynak Bayrak G, et al. Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin[J]. Cytotechnology, 2017,69(4):617-630.
pmid: 28653139
[20] Amir LR, Suniarti DF, Utami S, et al. Chitosan as a potential osteogenic factor compared with dexamethasone in cultured macaque dental pulp stromal cells[J]. Cell Tissue Res, 2014,358(2):407-415.
doi: 10.1007/s00441-014-1938-1 pmid: 24992928
[21] Kim NR, Lee DH, Chung PH, et al. Distinct diffe-rentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009,108(5):e94-e100.
doi: 10.1016/j.tripleo.2009.07.031 pmid: 19836718
[22] Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering[J]. Bone Res, 2017,5:17014.
doi: 10.1038/boneres.2017.14 pmid: 28584674
[23] Bhattacharya M, Malinen MM, Lauren P, et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture[J]. J Control Release, 2012,164(3):291-298.
doi: 10.1016/j.jconrel.2012.06.039 pmid: 22776290
[24] Teti G, Salvatore V, Focaroli S, et al. In vitro osteogenic and odontogenic differentiation of human dental pulp stem cells seeded on carboxymethyl cellulose-hydroxyapatite hybrid hydrogel[J]. Front Phy-siol, 2015,6:297.
[25] Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials[J]. Biomaterials, 1999,20(1):45-53.
doi: 10.1016/s0142-9612(98)00107-0 pmid: 9916770
[26] Bhoj M, Zhang CF, Green DW. A first step in de novo synjournal of a living pulp tissue replacement u-sing dental pulp MSCs and tissue growth factors, encapsulated within a bioinspired alginate hydrogel[J]. J Endod, 2015,41(7):1100-1107.
pmid: 25958179
[27] Diekjürgen D, Grainger DW. Polysaccharide matrices used in 3D in vitro cell culture systems[J]. Biomaterials, 2017,141:96-115.
doi: 10.1016/j.biomaterials.2017.06.020 pmid: 28672214
[28] Galler KM, Cavender AC, Koeklue U, et al. Bioengineering of dental stem cells in a PEGylated fibrin gel[J]. Regen Med, 2011,6(2):191-200.
doi: 10.2217/rme.11.3 pmid: 21391853
[29] Galler KM, D,Souza RN, Hartgerink JD, et al. Scaffolds for dental pulp tissue engineering[J]. Adv Dent Res, 2011,23(3):333-339.
pmid: 21677088
[30] Segers VF, Lee RT. Local delivery of proteins and the use of self-assembling peptides[J]. Drug Discov Today, 2007,12(13/14):561-568.
[31] Aulisa L, Dong H, Hartgerink JD. Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity[J]. Bioma-cromolecules, 2009,10(9):2694-2698.
[32] Galler KM, Cavender A, Yuwono V, et al. Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells[J]. Tissue Eng Part A, 2008,14(12):2051-2058.
[33] Galler KM, Hartgerink JD, Cavender AC, et al. A customized self-assembling peptide hydrogel for dental pulp tissue engineering[J]. Tissue Eng Part A, 2012,18(1/2):176-184.
[34] Dissanayaka WL, Hargreaves KM, Jin LJ, et al. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo[J]. Tissue Eng Part A, 2015,21(3/4):550-563.
[35] Ahmed EM. Hydrogel: preparation, characterization, and applications: a review[J]. J Adv Res, 2015,6(2):105-121.
[36] Gillette BM, Jensen JA, Wang MX, et al. Dynamic hydrogels: switching of 3D microenvironments u-sing two-component naturally derived extracellular matrices[J]. Adv Mater, 2010,22(6):686-691.
doi: 10.1002/adma.200902265 pmid: 20217770
[37] Devillard R, Rémy M, Kalisky J, et al. In vitro assessment of a collagen/alginate composite scaffold for regenerative endodontics[J]. Int Endod J, 2017,50(1):48-57.
doi: 10.1111/iej.2017.50.issue-1 pmid: 26650723
[38] Ravindran S, Zhang YB, Huang CC, et al. Odontogenic induction of dental stem cells by extracellular matrix-inspired three-dimensional scaffold[J]. Tissue Eng Part A, 2014,20(1/2):92-102.
doi: 10.1089/ten.tea.2013.0192
[39] Jones TD, Kefi A, Sun S, et al. An optimized injec-table hydrogel scaffold supports human dental pulp stem cell viability and spreading[J]. Adv Med, 2016,2016:7363579.
doi: 10.1155/2016/7363579 pmid: 27294191
[40] Naghizadeh Z, Karkhaneh A, Khojasteh A. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: injectable in situ forming scaffolds[J]. Mater Sci Eng C Mater Biol Appl, 2018,89:256-264.
doi: 10.1016/j.msec.2018.04.018 pmid: 29752097
[41] Khayat A, Monteiro N, Smith EE, et al. GelMA-encapsulated hDPSCs and HUVECs for dental pulp regeneration[J]. J Dent Res, 2017,96(2):192-199.
doi: 10.1177/0022034516682005 pmid: 28106508
[1] 和子慕, 李风兰. 数字化口腔定位支架在头颈部肿瘤放射治疗中的应用现状[J]. 国际口腔医学杂志, 2024, 51(1): 28-35.
[2] 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746.
[3] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[4] 吴嘉馨,程兴群,吴红崑. 透明质酸在修复龈乳头退缩中的临床应用进展[J]. 国际口腔医学杂志, 2023, 50(3): 347-352.
[5] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[6] 覃思文,廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282.
[7] 梁屹,裴锡波,万乾炳. 光响应水凝胶在生物医学领域应用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 12-18.
[8] 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26.
[9] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[10] 巩靖蕾,黄艳梅,王军. 多相支架在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 563-569.
[11] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
[12] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[13] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[14] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[15] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .