国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (4): 431-436.doi: 10.7518/gjkq.2019054

• 综述 • 上一篇    下一篇

表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状

梅宏翔1,张懿丹1,张城浩2,刘恩言1,陈昊1,赵志河2,廖文2()   

  1. 1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医学院 成都 610041
    2. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院正畸科 成都 610041
  • 收稿日期:2018-11-10 修回日期:2019-04-02 出版日期:2019-07-01 发布日期:2019-07-12
  • 作者简介:梅宏翔,学士,Email: 978604542@qq.com
  • 基金资助:
    国家自然科学基金(31600752);四川大学大学生创新创业训练计划(C2018103847);四川大学-泸州市人民政府战略合作项目(2018CDLZ-14)

Effect of epigallocatechin-3-gallate on stem cell proliferation and osteogenic differentiation

Mei Hongxiang1,Zhang Yidan1,Zhang Chenghao2,Liu Enyan1,Chen Hao1,Zhao Zhihe2,Liao Wen2()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China;
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
  • Received:2018-11-10 Revised:2019-04-02 Online:2019-07-01 Published:2019-07-12
  • Supported by:
    This study was supported by National Natural Science Foundation of China(31600752);Undergraduate Student Innovation and Entrepreneurship Training Program of Sichuan University(C2018103847);Sichuan University-Luzhou Municipal Government Strategic Cooperation Project(2018CDLZ-14)

摘要:

表没食子儿茶素没食子酸酯(EGCG)是茶叶中多酚类化合物的主要组成部分。近年来许多研究证明,作为一种抗氧化剂,EGCG能够参与调节多种生命过程,在抗炎以及抑制肿瘤生长等方面都具有重要作用。流行病学调查和动物实验都证实,EGCG能够抑制牙周炎及其引起的骨质流失,是牙周治疗的潜在辅助治疗药物。由于兼具抗炎和促成骨功能,EGCG在骨质缺损修复的组织工程材料改性中也具有极大的潜力。本文就EGCG对干细胞的增殖及成骨分化的作用机制进行综述,并总结其作为组织工程材料的优劣,为EGCG在牙周炎辅助治疗药物和骨组织工程材料等方面的研究与应用提供理论依据。

关键词: 表没食子儿茶素没食子酸酯, 增殖, 成骨分化, 组织工程

Abstract:

Tea polyphenols are a general term for polyphenols in tea, and epigallocatechin-3-gallate (EGCG) is a major component. As an antioxidant, EGCG can participate in the regulation of various life processes, including anti-inflammatory and anti-tumour activities. Epidemiological investigations and animal experiments have confirmed that EGCG can inhibit periodontitis and subsequent bone loss. Therefore, it might be a potential adjuvant treatment for periodontal treatment. Due to its anti-inflammatory and osteogenic functions, EGCG also has great potential in the modification of tissue engineering materials for bone defect repair. This article reviews the mechanism by which EGCG participates in stem cell proliferation and osteogenic differentiation, and summarises its advantages as a tissue engineering material. This paper provides a theoretical basis for the use of EGCG as periodontitis adjuvant therapy and bone tissue engineering material.

Key words: epigallocatechin-3-gallate, proliferation, osteogenesis, tissue engineering

中图分类号: 

  • Q254

图 1

EGCG的结构"

[1] Kinane DF, Stathopoulou PG, Papapanou PN . Periodontal diseases[J]. Nat Rev Dis Primers, 2017,3:17038.
[2] Bassir SH, Wisitrasameewong W, Raanan J , et al. Potential for stem cell-based periodontal therapy[J]. J Cell Physiol, 2016,231(1):50-61.
[3] 王婷婷, 万乾炳 . 骨髓干细胞应用于牙槽骨修复的展望[J]. 国际口腔医学杂志, 2008,35(S1):1-4.
Wang TT, Wan BQ . Prospect of the mesenchymal stem cell applicated in alveolar bone reparation[J]. Int J Stomatol, 2008,35(S1):1-4.
[4] Zhang ZF, Yang JL, Jiang HC , et al. Updated association of tea consumption and bone mineral density: a meta-analysis[J]. Medicine (Baltimore), 2017,96(12):e6437.
[5] Chopra A, Thomas BS, Sivaraman K , et al. Green tea intake as an adjunct to mechanical periodontal therapy for the management of mild to moderate chronic periodontitis: a randomized controlled clinicaltrial[J]. Oral Health Prev Dent, 2016,14(4):293-303.
[6] Morin MP, Grenier D . Regulation of matrix metalloproteinase secretion by green tea catechins in a three-dimensional co-culture model of macrophages and gingival fibroblasts[J]. Arch Oral Biol, 2017,75:89-99.
[7] Tominari T, Ichimaru R, Yoshinouchi S , et al. Effects of O-methylated (-)-epigallocatechin gallate (EGCG) on LPS-induced osteoclastogenesis, bone resorption, and alveolar bone loss in mice[J]. FEBS Open Bio, 2017,7(12):1972-1981.
[8] Lee BS, Lee CC, Lin HP , et al. A functional chitosan membrane with grafted epigallocatechin-3-gallate and lovastatin enhances periodontal tissue regeneration in dogs[J]. Carbohydr Polym, 2016,151:790-802.
[9] Tominari T, Matsumoto C, Watanabe K , et al. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice[J]. FEBS Open Bio, 2015,5:522-527.
[10] Yagi H, Tan J, Tuan RS . Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells[J]. J Cell Biochem, 2013,114(5):1163-1173.
doi: 10.1002/jcb.24459
[11] Chakrawarti L, Agrawal R, Dang S , et al. Therapeutic effects of EGCG: a patent review[J]. Expert Opin Ther Pat, 2016,26(8):907-916.
[12] Cai YZ, Mei Sun, Jie Xing , et al. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants[J]. Life Sci, 2006,78(25):2872-2888.
[13] Inaba H, Tagashira M, Kanda T , et al. Apple- and Hop-polyphenols inhibit Porphyromonas gingivalis-mediated precursor of matrix metalloproteinase-9 activation and invasion of oral squamous cell carcinoma cells[J]. J Periodontol, 2016,87(9):1103-1111.
[14] Jin P, Li M, Xu G , et al. Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: an enhancer or an inducer[j]. Exp Ther Med, 2015,10(2):828-834.
[15] Liu W, Fan JB, Xu DW , et al. Epigallocatechin-3-gallate protects against tumor necrosis factor alpha induced inhibition of osteogenesis of mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2016,241(6):658-666.
[16] Kaida K, Honda Y, Hashimoto Y , et al. Application of green tea catechin for inducing the osteogenic differentiation of human dedifferentiated fat cells in vitro[J]. Int J Mol Sci, 2015,16(12):27988-28000.
[17] Chen CH, Ho ML, Chang JK , et al. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line[J]. Osteoporos Int, 2005,16(12):2039-2045.
[18] Kim HS, Quon MJ, Kim JA . New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate[J]. Redox Biol, 2014,2:187-195.
[19] Li Y, Zhao S, Zhang W , et al. Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo[J]. Diabetes Res Clin Pract, 2011,93(2):205-214.
[20] Wei Y, Chen P, Ling T , et al. Certain (-)-epigalloca-techin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG[J]. Food Chem, 2016,204:218-226.
[21] Chen CH, Kang L, Lin RW , et al.( -)-Epigallocate-chin-3-gallate improves bone microarchitecture in ovariectomized rats[J]. Menopause, 2013,20(6):687-694.
doi: 10.1097/gme.0b013e31828244f0
[22] Cho AR, Kim JH, Lee DE , et al. The effect of orally administered epigallocatechin-3-gallate on ligature-induced periodontitis in rats[J]. J Periodontal Res, 2013,48(6):781-789.
[23] Kanzaki H, Shinohara F, Itohiya-Kasuya K , et al. Nrf2 activation attenuates both orthodontic tooth movement and relapse[J]. J Dent Res, 2015,94(6):787-794.
[24] Aubin JE . Advances in the osteoblast lineage[J]. Biochem Cell Biol, 1998,76(6):899-910.
[25] Chen CH, Ho ML, Chang JK , et al. Green tea catechins enhance the expression of osteoprotegerin (OPG) in pluripotent stem cells[J]. J Orthop Surg Taiwan, 2003,20(4):178-183.
[26] Jin P, Wu H, Xu G , et al. Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study[J]. Cell Tissue Res, 2014,356(2):381-390.
doi: 10.1007/s00441-014-1797-9
[27] Schroeder TM, Jensen ED, Westendorf JJ . Runx2: a master organizer of gene transcription in developing and maturing osteoblasts[J]. Birth Defects Res C Embryo Today, 2005,75(3):213-225.
[28] Liu W, Toyosawa S, Furuichi T , et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures[J]. J Cell Biol, 2001,155(1):157-166.
[29] Vali B, Rao LG, El-Sohemy A . Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells[J]. J Nutr Biochem, 2007,18(5):341-347.
doi: 10.1016/j.jnutbio.2006.06.005
[30] Kamon M, Zhao R, Sakamoto K . Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells[J]. Cell Biol Int, 2009,34(1):109-116.
[31] Sakai G, Otsuka T, Fujita K , et al. Amplification by (-)-epigallocatechin gallate of prostaglandin F2α- stimulated synjournal of osteoprotegerin in osteoblasts[J]. Mol Med Rep, 2017,16(5):6376-6381.
[32] Varela-López A, Ochoa JJ, Llamas-Elvira JM , et al. Loss of bone mineral density associated with age in male rats fed on sunflower oil is avoided by virgin olive oil intake or coenzyme Q supplementation[J]. Int J Mol Sci, 2017,18(7). doi: 10.3390/ijms18071397.
[33] Atashi F, Modarressi A, Pepper MS . The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review[J]. Stem Cells Dev, 2015,24(10):1150-1163.
[34] Legeay S, Rodier M, Fillon L , et al. Epigallocatechin gallate: a review of its beneficial properties to prevent metabolic syndrome[J]. Nutrients, 2015,7(7):5443-5468.
[35] Tachibana H, Koga K, Fujimura Y , et al. A receptor for green tea polyphenol EGCG[J]. Nat Struct Mol Biol, 2004,11(4):380-381.
[36] Li YF, Wang H, Fan Y , et al. Epigallocatechin-3-gallate inhibits matrix metalloproteinase-9 and monocyte chemotactic protein-1 expression through the 67-kDa laminin receptor and the TLR4/MAPK/NF-κB signalling pathway in lipopolysaccharide-induced macrophages[J]. Cell Physiol Biochem, 2017,43(3):926-936.
[37] Lerner UH, Ohlsson C . The WNT system: background and its role in bone[J]. J Intern Med, 2015,277(6):630-649.
[38] Wang D, Wang Y, Xu S , et al. Epigallocatechin-3-gallate protects against hydrogen peroxide-induced inhibition of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. Stem Cells Int, 2016,2016:7532798.
[39] Huang CH, Tseng WY, Yao CC , et al. Glucosamine promotes osteogenic differentiation of dental pulp stem cells through modulating the level of the transforming growth factor-beta type Ⅰ receptor[J]. J Cell Physiol, 2010,225(1):140-151.
[40] Liu XD, Cai F, Liu L , et al. MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation[J]. Biol Chem, 2015,396(4):339-347.
[41] Qiu Y, Chen Y, Zeng T , et al. EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210[J]. Mol Biol Rep, 2016,43(3):183-193.
[42] Honda Y, Tanaka T, Tokuda T , et al. Local controlled release of polyphenol conjugated with gelatin facilitates bone formation[J]. Int J Mol Sci, 2015,16(6):14143-14157.
[43] Rodriguez R, Kondo H, Nyan M , et al. Implantation of green tea catechin α-tricalcium phosphate combination enhances bone repair in rat skull defects[J]. J Biomed Mater Res B Appl Biomater, 2011,98(2):263-271.
[44] Chu C, Deng J, Xiang L , et al. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016,67:386-394.
[45] Chu C, Deng J, Hou Y , et al. Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:31-36.
[46] Chu C, Deng J, Man Y , et al. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017,78:258-264.
[47] Mah YJ, Song JS, Kim SO , et al. The effect of epigallocatechin-3-gallate (EGCG) on human alveolar bone cells both in vitro and in vivo[J]. Arch Oral Biol, 2014,59(5):539-549.
doi: 10.1016/j.archoralbio.2014.02.011
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[3] 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746.
[4] 吴嘉馨,程兴群,吴红崑. 透明质酸在修复龈乳头退缩中的临床应用进展[J]. 国际口腔医学杂志, 2023, 50(3): 347-352.
[5] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[6] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[7] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[8] 熊梦琳,吴龙,马丽,赵今. 转化生长因子-β2促进牙髓干细胞增殖和分化的作用研究[J]. 国际口腔医学杂志, 2021, 48(6): 635-639.
[9] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[10] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[11] 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527.
[12] 巩靖蕾,黄艳梅,王军. 多相支架在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 563-569.
[13] 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197.
[14] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
[15] 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .