国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (5): 563-569.doi: 10.7518/gjkq.2021101
Gong Jinglei(),Huang Yanmei,Wang Jun()
摘要:
牙周炎导致的牙周组织破坏会引起牙齿松动及脱落,危害口腔甚至全身健康。近年来牙周各组织的时空关系及其功能重建已经成为研究前沿,这对传统的牙周组织再生相关技术提出了更高的要求。多相支架作为一种新兴组织工程材料,其区域特异性在重建软硬组织生理特性和功能关系方面均表现出独特的优势,成为牙周再生以及功能整合的关键。本文对近年来多相支架在牙周结构及功能再生领域的研究进展进行综述,关注其与生长因子传递、干细胞技术、现有牙周治疗策略以及新兴材料技术相结合的前沿,进一步指导未来组织工程与口腔医学领域的合作方向。
中图分类号:
[1] |
Han J, Menicanin D, Gronthos S, et al. Stem cells, tissue engineering and periodontal regeneration[J]. Aust Dent J, 2014, 59:117-130.
doi: 10.1111/adj.2014.59.issue-s1 |
[2] |
Park CH. Biomaterial-based approaches for regene-ration of periodontal ligament and cementum using 3D platforms[J]. Int J Mol Sci, 2019, 20(18):4364.
doi: 10.3390/ijms20184364 |
[3] |
Ji S, Choi YS, Choi Y. Bacterial invasion and persistence: critical events in the pathogenesis of perio-dontitis[J]. J Periodontal Res, 2015, 50(5):570-585.
doi: 10.1111/jre.12248 pmid: 25487426 |
[4] | Onizuka S, Iwata T. Application of periodontal ligament-derived multipotent mesenchymal stromal cell sheets for periodontal regeneration[J]. Int J Mol Sci, 2019, 20(11):E2796. |
[5] | 和璐. 牙周炎和代谢综合征[J]. 北京大学学报(医学版), 2011, 43(1):13-17. |
He L. Periodontitis and metabolic syndrome[J]. J Pe-king Univ (Heal Sci), 2011, 43(1):13-17. | |
[6] | Sanz M, Ceriello A, Buysschaert M, et al. Scientific evidence on the links between periodontal diseases and diabetes: consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology[J]. J Clin Perio-dontol, 2018, 45(2):138-149. |
[7] | 王勤涛, 吴织芬. 牙周病与全身系统性疾病间的相互关系[J]. 国外医学口腔医学分册, 2003, 30(2):135-137. |
Wang QT, Wu ZF. The relationship between perio-dontal disease and systemic diseases[J]. Foreign Med Sci (Stomatol), 2003, 30(2):135-137. | |
[8] |
Kamer AR, Craig RG, Dasanayake AP, et al. Inflammation and Alzheimer’s disease: possible role of pe-riodontal diseases[J]. Alzheimers Dement, 2008, 4(4):242-250.
doi: 10.1016/j.jalz.2007.08.004 |
[9] |
Shin YJ, Choung HW, Lee JH, et al. Association of periodontitis with oral cancer: a case-control study[J]. J Dent Res, 2019, 98(5):526-533.
doi: 10.1177/0022034519827565 pmid: 30779879 |
[10] |
Li XJ, Kolltveit KM, Tronstad L, et al. Systemic di-seases caused by oral infection[J]. Clin Microbiol Rev, 2000, 13(4):547-558.
doi: 10.1128/CMR.13.4.547 pmid: 11023956 |
[11] | Iheozor-Ejiofor Z, Middleton P, Esposito M, et al. Treating periodontal disease for preventing adverse birth outcomes in pregnant women[J]. Cochrane Database Syst Rev, 2017, 6(6): CD005297. |
[12] |
Jeon JE, Vaquette C, Klein TJ, et al. Perspectives in multiphasic osteochondral tissue engineering[J]. Anat Rec (Hoboken), 2014, 297(1):26-35.
doi: 10.1002/ar.v297.1 |
[13] |
Yousefi AM, Hoque ME, Prasad RG, et al. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review[J]. J Biomed Mater Res A, 2015, 103(7):2460-2481.
doi: 10.1002/jbm.v103.7 |
[14] |
Park CH, Rios HF, Jin Q, et al. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces[J]. Biomaterials, 2010, 31(23):5945-5952.
doi: 10.1016/j.biomaterials.2010.04.027 |
[15] |
Zhu WT, Zhang Q, Zhang Y, et al. PDL regeneration via cell homing in delayed replantation of avulsed teeth[J]. J Transl Med, 2015, 13:357.
doi: 10.1186/s12967-015-0719-2 |
[16] | de Jong T, Bakker AD, Everts V, et al. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration[J]. J Perio-dontal Res, 2017, 52(6):965-974. |
[17] |
Park CH, Kim KH, Lee YM, et al. 3D printed, microgroove pattern-driven generation of oriented ligamentous architectures[J]. Int J Mol Sci, 2017, 18(9):1927.
doi: 10.3390/ijms18091927 |
[18] |
Sowmya S, Mony U, Jayachandran P, et al. Tri-la-yered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone[J]. Adv Healthc Mater, 2017, 6(7). doi: 10.1002/adhm.201601251.
doi: 10.1002/adhm.201601251 |
[19] |
Huang RY, Tai WC, Ho MH, et al. Combination of a biomolecule-aided biphasic cryogel scaffold with a barrier membrane adhering PDGF-encapsulated na-nofibers to promote periodontal regeneration[J]. J Periodontal Res, 2020, 55(4):529-538.
doi: 10.1111/jre.v55.4 |
[20] |
Lee CH, Hajibandeh J, Suzuki T, et al. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex[J]. Tissue Eng Part A, 2014, 20(7/8):1342-1351.
doi: 10.1089/ten.tea.2013.0386 |
[21] |
Ding T, Li J, Zhang X, et al. Super-assembled core/shell fibrous frameworks with dual growth factors for in situ cementum-ligament-bone complex rege-neration[J]. Biomater Sci, 2020, 8(9):2459-2471.
doi: 10.1039/D0BM00102C |
[22] |
Wu C, Zhang Y, Zhou Y, et al. A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteoge-nesis[J]. Acta Biomater, 2011, 7(5):2229-2236.
doi: 10.1016/j.actbio.2010.12.019 |
[23] |
Zhang YF, Miron RJ, Li SE, et al. Novel MesoPorous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs[J]. J Clin Periodontol, 2015, 42(3):262-271.
doi: 10.1111/jcpe.12364 |
[24] | Xie Q, Jia LN, Xu HY, et al. Fabrication of core-shell PEI/pBMP2-PLGA electrospun scaffold for gene delivery to periodontal ligament stem cells[J]. Stem Cells Int, 2016, 2016:5385137. |
[25] |
Liu J, Ruan J, Weir MD, et al. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells[J]. Cells, 2019, 8(6):537.
doi: 10.3390/cells8060537 |
[26] |
Wu M, Wang J, Zhang Y, et al. Mineralization induction of gingival fibroblasts and construction of a sandwich tissue-engineered complex for repairing periodontal defects[J]. Med Sci Monit, 2018, 24:1112-1123.
doi: 10.12659/MSM.908791 |
[27] |
Requicha JF, Viegas CA, Muñoz F, et al. A tissue engineering approach for periodontal regeneration ba-sed on a biodegradable double-layer scaffold and adi-pose-derived stem cells[J]. Tissue Eng Part A, 2014, 20(17/18):2483-2492.
doi: 10.1089/ten.tea.2013.0360 |
[28] |
Chen G, Chen J, Yang B, et al. Combination of alig-ned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration[J]. Biomaterials, 2015, 52:56-70.
doi: 10.1016/j.biomaterials.2015.02.011 |
[29] | Kawecki F, Clafshenkel WP, Fortin M, et al. Biomimetic tissue-engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies[J]. Adv Healthc Mater, 2018, 7(6):e1700919. |
[30] |
Owaki T, Shimizu T, Yamato M, et al. Cell sheet engineering for regenerative medicine: current challenges and strategies[J]. Biotechnol J, 2014, 9(7):904-914.
doi: 10.1002/biot.201300432 |
[31] | Iwata T, Yamato M, Tsuchioka H, et al. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model[J]. Biomate-rials, 2009, 30(14):2716-2723. |
[32] |
Vaquette C, Fan W, Xiao Y, et al. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex[J]. Biomaterials, 2012, 33(22):5560-5573.
doi: 10.1016/j.biomaterials.2012.04.038 pmid: 22575832 |
[33] |
Costa PF, Vaquette C, Zhang QY, et al. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure[J]. J Clin Periodontol, 2014, 41(3):283-294.
doi: 10.1111/jcpe.12214 |
[34] | Farias BC, Souza PR, Ferreira B, et al. Occurrence of periodontal pathogens among patients with chro-nic periodontitis[J]. Publ Braz Soc Microbiol, 2012, 43(3):909-916. |
[35] |
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug deli-very in cancer[J]. Trends Pharmacol Sci, 2009, 30(11):592-599.
doi: 10.1016/j.tips.2009.08.004 |
[36] |
Zhang J, Misra RD. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response[J]. Acta Biomater, 2007, 3(6):838-850.
pmid: 17638599 |
[37] |
Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, et al. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58:521-531.
doi: 10.1016/j.msec.2015.08.066 |
[38] | Chen J, Zhou B, Li Q, et al. PLLA-PEG-TCH-labeled bioactive molecule nanofibers for tissue engineering[J]. Int J Nanomedicine, 2011, 6:2533-2542. |
[39] |
Guo Z, Bo D, He P, et al. Sequential controlled-released dual-drug loaded scaffold for guided bone regeneration in a rat fenestration defect model[J]. J Mater Chem B, 2017, 5(37):7701-7710.
doi: 10.1039/C7TB00909G |
[40] |
Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration-a materials perspective[J]. Dent Mater, 2012, 28(7):703-721.
doi: 10.1016/j.dental.2012.04.022 pmid: 22592164 |
[41] |
Carlo Reis EC, Borges AP, Araújo MV, et al. Perio-dontal regeneration using a bilayered PLGA/calcium phosphate construct[J]. Biomaterials, 2011, 32(35):9244-9253.
doi: 10.1016/j.biomaterials.2011.08.040 |
[42] |
Ma Y, Xie L, Yang B, et al. Three-dimensional prin-ting biotechnology for the regeneration of the tooth and tooth-supporting tissues[J]. Biotechnol Bioeng, 2019, 116(2):452-468.
doi: 10.1002/bit.v116.2 |
[43] |
Park CH, Rios HF, Taut AD, et al. Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces[J]. Tissue Eng Part C Methods, 2014, 20(7):533-542.
doi: 10.1089/ten.tec.2013.0619 |
[44] | Pilipchuk SP, Fretwurst T, Yu N, et al. Micropatterned scaffolds with immobilized growth factor genes regenerate bone and periodontal ligament-like tissues[J]. Adv Healthc Mater, 2018, 7(22):e1800750. |
[45] |
Pilipchuk SP, Monje A, Jiao Y, et al. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo[J]. Adv Healthc Mater, 2016, 5(6):676-687.
doi: 10.1002/adhm.201500758 |
[46] |
Kim EC, Park J, Kwon IK, et al. Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells[J]. J Periodontal Implant Sci, 2017, 47(5):273-291.
doi: 10.5051/jpis.2017.47.5.273 |
[47] |
Dodel M, Hemmati Nejad N, Bahrami SH, et al. Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration[J]. Biologicals, 2017, 46:99-107.
doi: 10.1016/j.biologicals.2017.01.007 |
[48] |
Sprio S, Campodoni E, Sandri M, et al. A graded multifunctional hybrid scaffold with superparamagnetic ability for periodontal regeneration[J]. Int J Mol Sci, 2018, 19(11):3604.
doi: 10.3390/ijms19113604 |
[49] |
Jang AT, Chen L, Shimotake AR, et al. A force on the crown and tug of war in the periodontal complex[J]. J Dent Res, 2018, 97(3):241-250.
doi: 10.1177/0022034517744556 pmid: 29364757 |
[50] |
Kim YT, Park JC, Choi SH, et al. The dynamic hea-ling profile of human periodontal ligament stem cells: histological and immunohistochemical analysis u-sing an ectopic transplantation model[J]. J Periodontal Res, 2012, 47(4):514-524.
doi: 10.1111/j.1600-0765.2011.01463.x pmid: 22308979 |
[51] |
Spalazzi JP, Dagher E, Doty SB, et al. In vivo evalua-tion of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration[J]. J Biomed Mater Res A, 2008, 86(1):1-12.
doi: 10.1002/jbm.a.32073 pmid: 18442111 |
[1] | 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746. |
[2] | 于乐蓉,李祥伟,艾虹. 牙髓干细胞干性维持的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 463-471. |
[3] | 吴嘉馨,程兴群,吴红崑. 透明质酸在修复龈乳头退缩中的临床应用进展[J]. 国际口腔医学杂志, 2023, 50(3): 347-352. |
[4] | 杨梦瑶,高现灵,邓淑丽. 静电纺丝纳米纤维在牙周再生中的应用[J]. 国际口腔医学杂志, 2023, 50(1): 10-18. |
[5] | 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42. |
[6] | 周灿,曾倩,韦曦. 浓缩生长因子在活髓保存治疗中的应用前景[J]. 国际口腔医学杂志, 2022, 49(6): 684-689. |
[7] | 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488. |
[8] | 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496. |
[9] | 蔡韵竹,朱姝,刘尧,陈旭. 牙源性干细胞用于治疗神经系统疾病的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 255-262. |
[10] | 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271. |
[11] | 覃思文,廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282. |
[12] | 付恒怡,汪成林. 人牙髓干细胞无血清培养方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 220-226. |
[13] | 熊梦琳,吴龙,马丽,赵今. 转化生长因子-β2促进牙髓干细胞增殖和分化的作用研究[J]. 国际口腔医学杂志, 2021, 48(6): 635-639. |
[14] | 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695. |
[15] | 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744. |
|