国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 255-262.doi: 10.7518/gjkq.2022043

• 干细胞和再生医学专栏 • 上一篇    下一篇

牙源性干细胞用于治疗神经系统疾病的研究进展

蔡韵竹(),朱姝,刘尧,陈旭()   

  1. 中国医科大学口腔医学院·附属口腔医院儿童口腔科辽宁省口腔疾病重点实验室 沈阳 110002
  • 收稿日期:2021-06-18 修回日期:2021-12-13 出版日期:2022-05-01 发布日期:2022-05-09
  • 通讯作者: 陈旭
  • 作者简介:蔡韵竹,硕士,Email:2940446761@qq.com
  • 基金资助:
    国家自然科学基金(81900963);教育部重点实验室开放基金(zyzx1909)

Research progress on dental stem cells in the treatment of nervous system diseases

Cai Yunzhu(),Zhu Shu,Liu Yao,Chen Xu.()   

  1. Dept. of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
  • Received:2021-06-18 Revised:2021-12-13 Online:2022-05-01 Published:2022-05-09
  • Contact: Xu. Chen
  • Supported by:
    National Natural Science Foundation of China(81900963);the Open Fund of Key Laboratory of Ministry of Education(zyzx1909)

摘要:

神经系统疾病包括中枢神经系统疾病和外周神经系统疾病,如脊髓损伤、阿尔茨海默症、脑卒中、慢性脑缺血和坐骨神经损伤等,目前尚无有效治疗方法。间充质干细胞具有自我更新和多向分化潜能,成为治疗神经系统疾病的新策略。牙源性干细胞来源于胚胎神经嵴,与神经组织同源。与其他组织来源的干细胞相比,具有容易获得、取材损伤小和免疫排斥反应低等特点。本文就牙源性干细胞应用于神经系统疾病组织修复与再生的研究进展作一综述。

关键词: 牙源性干细胞, 神经系统疾病, 组织修复, 神经再生

Abstract:

Nervous system diseases include central and peripheral nervous system diseases, such as spinal cord injury, Alzheimer’s disease, stroke, chronic cerebral ischemia, and sciatic nerve injury. No effective treatment method is available for these diseases. Mesenchymal stem cells (MSCs) have the potential for self-renewal and multi-lineage differentiation and have gradually become a new strategy for the treatment of neurological diseases. Dental stem cells are derived from the embryonic neural crest and are homologous to nervous tissues. Compared with MSCs from other tissues, dental stem cells are easier to obtain and have less damages to the donor and less susceptibility to immune rejection. This article reviews the research advances of application of dental stem cells in tissue repair and regeneration of nervous system diseases.

Key words: dental stem cell, nervous system disease, tissue repair, nerve regeneration

中图分类号: 

  • Q 813
1 Wang DR, Wang YH, Tian WD, et al. Advances of tooth-derived stem cells in neural diseases treatments and nerve tissue regeneration[J]. Cell Prolif, 2019, 52(3): e12572.
2 Abuarqoub D, Aslam N, Almajali B, et al. Neuro-regenerative potential of dental stem cells: a concise review[J]. Cell Tissue Res, 2020, 382(2): 267-279.
3 Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
4 Miura M, Gronthos S, Zhao MR, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A, 2003, 100(10): 5807-5812.
5 Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human perio-dontal ligament[J]. Lancet, 2004, 364(9429): 149-155.
6 Honda MJ, Imaizumi M, Tsuchiya S, et al. Dental follicle stem cells and tissue engineering[J]. J Oral Sci, 2010, 52(4): 541-552.
7 Sonoyama W, Liu Y, Fang DJ, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine[J]. PLoS One, 2006, 1: e79.
8 Su WT, Shih YA, Ko CS. Effect of chitosan conduit under a dynamic culture on the proliferation and neural differentiation of human exfoliated deciduous teeth stem cells[J]. J Tissue Eng Regen Med, 2016, 10(6): 507-517.
9 Huang CY, Pelaez D, Dominguez-Bendala J, et al. Plasticity of stem cells derived from adult periodontal ligament[J]. Regen Med, 2009, 4(6): 809-821.
10 Morsczeck C, Völlner F, Saugspier M, et al. Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro[J]. Clin Oral Investig, 2010, 14(4): 433-440.
11 Kolar MK, Itte VN, Kingham PJ, et al. The neurotrophic effects of different human dental mesenchymal stem cells[J]. Sci Rep, 2017, 7(1): 12605.
12 Jiang Y, Gong FL, Zhao GB, et al. Chrysin suppressed inflammatory responses and the inducible nitric oxide synthase pathway after spinal cord injury in rats[J]. Int J Mol Sci, 2014, 15(7): 12270-12279.
13 Yamamoto A, Sakai K, Matsubara K, et al. Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury[J]. Neurosci Res, 2014, 78: 16-20.
14 Yang C, Li XH, Sun L, et al. Potential of human dental stem cells in repairing the complete transection of rat spinal cord[J]. J Neural Eng, 2017, 14(2): 026005.
15 Guo SW, Redenski I, Landau S, et al. Prevascularized scaffolds bearing human dental pulp stem cells for treating complete spinal cord injury[J]. Adv Healthc Mater, 2020, 9(20): e2000974.
16 Nicola FDC, Marques MR, Odorcyk F, et al. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis[J]. Brain Res, 2017, 1663: 95-105.
17 刘露, 翟启明, 张青, 等. 脱落乳牙牙髓干细胞治疗大鼠脊髓损伤的实验研究[J]. 实用口腔医学杂志, 2020, 36(3): 437-442.
Liu L, Zhai QM, Zhang Q, et al. An experimental study of stem cells from human exfoliated deciduous teeth in the treatment of spinal cord injury in rats[J]. J Pract Stomatol, 2020, 36(3): 437-442.
18 De Berdt P, Bottemanne P, Bianco J, et al. Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-a secretion[J]. Cell Mol Life Sci, 2018, 75(15): 2843-2856.
19 Kandalam S, De Berdt P, Ucakar B, et al. Human dental stem cells of the apical papilla associated to BDNF-loaded pharmacologically active microcarriers (PAMs) enhance locomotor function after spinal cord injury[J]. Int J Pharm, 2020, 587: 119685.
20 Wang FX, Jia YL, Liu JJ, et al. Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer’s disease[J]. Cell Biol Int, 2017, 41(6): 639-650.
21 Fu J, Zhang XM, Ouyang YJ, et al. Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer’s disease[J]. Neural Regen Res, 2021, 16(5): 893-898.
22 Ahmed Nel-M, Murakami M, Hirose Y, et al. Therapeutic potential of dental pulp stem cell secretome for Alzheimer’s disease treatment: an in vitro study[J]. Stem Cells Int, 2016, 2016: 8102478.
23 Mita T, Furukawa-Hibi Y, Takeuchi H, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease[J]. Behav Brain Res, 2015, 293: 189-197.
24 Kanafi M, Majumdar D, Bhonde R, et al. Midbrain cues dictate differentiation of human dental pulp stem cells towards functional dopaminergic neurons[J]. J Cell Physiol, 2014, 229(10): 1369-1377.
25 Gnanasegaran N, Govindasamy V, Mani V, et al. Neuroimmunomodulatory properties of DPSCs in an in vitro model of Parkinson’s disease[J]. IUBMB Life, 2017, 69(9): 689-699.
26 Narbute K, Piļipenko V, Pupure J, et al. Intranasal administration of extracellular vesicles derived from human teeth stem cells improves motor symptoms and normalizes tyrosine hydroxylase expression in the substantia nigra and striatum of the 6-hydroxydopamine-treated rats[J]. Stem Cells Transl Med, 2019, 8(5): 490-499.
27 Zhang N, Lu XJ, Wu SC, et al. Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats[J]. Cytotherapy, 2018, 20(5): 670-686.
28 GBD 2016 DALYs and HALE Collaborators. Glo-bal, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100): 1260-1344.
29 Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view[J]. Trends Neurosci, 1999, 22(9): 391-397.
30 Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke[J]. Int J Stroke, 2009, 4(6): 461-470.
31 Zhang XM, Zhou YL, Li HL, et al. Transplanted dental pulp stem cells migrate to injured area and express neural markers in a rat model of cerebral ische-mia[J]. Cell Physiol Biochem, 2018, 45(1): 258-266.
32 Song M, Lee JH, Bae J, et al. Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral ischemic injury[J]. Cell Transplant, 2017, 26(6): 1001-1016.
33 徐婉婷. 比较牙髓干细胞和牙周膜干细胞的神经向分化能力以及对脑缺血模型的治疗效果[D]. 合肥: 安徽医科大学, 2020.
Xu WT. Comparison of the differentiation of dental pulp stem cells and periodontal ligament stem cells into neuron-like cells and the treatment effect on focal cerebral ischemia[D]. Hefei: Anhui Medical University, 2020.
34 Sowa K, Nito C, Nakajima M, et al. Impact of dental pulp stem cells overexpressing hepatocyte growth factor after cerebral ischemia/reperfusion in rats[J]. Mol Ther Methods Clin Dev, 2018, 10: 281-290.
35 Mead B, Logan A, Berry M, et al. Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair[J]. Stem Cells, 2017, 35(1): 61-67.
36 Mead B, Hill LJ, Blanch RJ, et al. Mesenchymal stromal cell-mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma[J]. Cytotherapy, 2016, 18(4): 487-496.
37 Cen LP, Ng TK, Liang JJ, et al. Human periodontal ligament-derived stem cells promote retinal ganglion cell survival and axon regeneration after optic nerve injury[J]. Stem Cells, 2018, 36(6): 844-855.
38 Otani T, Ochiai D, Masuda H, et al. The neurorestora-tive effect of human amniotic fluid stem cells on the chronic phase of neonatal hypoxic-ischemic encepha-lopathy in mice[J]. Pediatr Res, 2019, 85(1): 97-104.
39 Tatebayashi K, Takagi T, Fujita M, et al. Adipose-derived stem cell therapy inhibits the deterioration of cerebral infarction by altering macrophage kine-tics[J]. Brain Res, 2019, 1712: 139-150.
40 Namioka T, Namioka A, Sasaki M, et al. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a rat model of chronic cerebral infarction[J]. J Neurosurg, 2018: 1-8.
41 Zhu S, Min DY, Zeng JH, et al. Transplantation of stem cells from human exfoliated deciduous teeth decreases cognitive impairment from chronic cerebral ischemia by reducing neuronal apoptosis in rats[J]. Stem Cells Int, 2020, 2020: 6393075.
42 Chiu HY, Lin CH, Hsu CY, et al. IGF-1R+ dental pulp stem cells enhanced neuroplasticity in hypoxia-ischemia model[J]. Mol Neurobiol, 2017, 54(10): 8225-8241.
43 Sanen K, Martens W, Georgiou M, et al. Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair[J]. J Tissue Eng Regen Med, 2017, 11(12): 3362-3372.
44 Carnevale G, Pisciotta A, Riccio M, et al. Human dental pulp stem cells expressing STRO-1, c-kit and CD34 markers in peripheral nerve regeneration[J]. J Tissue Eng Regen Med, 2018, 12(2): e774-e785.
45 Luo LH, He Y, Jin L, et al. Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries[J]. Bioact Mater, 2021, 6(3): 638-654.
46 Hata M, Omi M, Kobayashi Y, et al. Transplantation of human dental pulp stem cells ameliorates diabetic polyneuropathy in streptozotocin-induced diabetic nude mice: the role of angiogenic and neurotrophic factors[J]. Stem Cell Res Ther, 2020, 11(1): 236.
47 Sasaki R, Matsumine H, Watanabe Y, et al. Electrophysiologic and functional evaluations of regenera-ted facial nerve defects with a tube containing dental pulp cells in rats[J]. Plast Reconstr Surg, 2014, 134(5): 970-978.
48 Saez DM, Sasaki RT, Martins DO, et al. Rat facial nerve regeneration with human immature dental pulp stem cells[J]. Cell Transplant, 2019, 28(12): 1573-1584.
49 陈彪, 张睿, 张文娟, 等. 牙髓干细胞对兔面神经损伤的修复作用及其机制[J]. 吉林大学学报(医学版), 2018, 44(3): 504-509, 695.
Chen B, Zhang R, Zhang WJ, et al. Repair effect of dental pulp stem cells on facial nerve injury in rabbits and its mechanism[J]. J Jilin Univ (Med Ed), 2018, 44(3): 504-509, 695.
50 Pereira LV, Bento RF, Cruz DB, et al. Stem cells from human exfoliated deciduous teeth (SHED) differentiate in vivo and promote facial nerve regeneration[J]. Cell Transplant, 2019, 28(1): 55-64.
51 Sung DK, Chang YS, Ahn SY, et al. Optimal route for human umbilical cord blood-derived mesenchymal stem cell transplantation to protect against neonatal hyperoxic lung injury: gene expression profiles and histopathology[J]. PLoS One, 2015, 10(8): e0135574.
52 Khojasteh A, Motamedian SR, Rad MR, et al. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation[J]. World J Stem Cells, 2015, 7(10): 1215-1221.
53 Zhao YH, Wang YJ, Gong JH, et al. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments[J]. Biomaterials, 2017, 134: 64-77.
54 Li XH, Yang C, Li L, et al. A therapeutic strategy for spinal cord defect: human dental follicle cells combined with aligned PCL/PLGA electrospun material[J]. Biomed Res Int, 2015, 2015: 197183.
55 Li R, Li YY, Wu YQ, et al. Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats[J]. Biomaterials, 2018, 168: 24-37.
56 Rao ZL, Lin T, Qiu S, et al. Decellularized nerve matrix hydrogel scaffolds with longitudinally oriented and size-tunable microchannels for peripheral nerve regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111791.
[1] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[2] 张凯莹,房付春,吴补领. 非编码RNA在牙源性干细胞成牙本质向分化中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 540-545.
[3] 朱宸佑, 魏诗敏, 汪媛婧, 伍颖颖. 巨噬细胞在骨组织修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 444-448.
[4] 张湘宜, 刘亚丽. 牙源性干细胞的免疫调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 276-279.
[5] 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285.
[6] 朱宸佑,曹钰彬,邓佳,亓文婷,曹聪,石冰. 胶原-生长因子生物材料及其在骨和神经再生中的应用[J]. 国际口腔医学杂志, 2016, 43(6): 729-733.
[7] 尹程程 李保胜 蔡青 孟维艳. 周围神经损伤后的神经再生和种植体周围神经再生的影响因素[J]. 国际口腔医学杂志, 2016, 43(1): 69-.
[8] 李源静 刘文静 杨岚综述 郭吕华审校. 中药用于骨组织修复重建的研究进展[J]. 国际口腔医学杂志, 2013, 40(4): 523-525.
[9] 李浩1 张纲 2 郑维银 1 李焰 1. 美容缝合技术在颌面部创伤中应用的疗效观察李浩[J]. 国际口腔医学杂志, 2013, 40(2): 169-171.
[10] 郭海啸综述 林李嵩审校. 同种异体复合组织移植后神经再生的研究进展[J]. 国际口腔医学杂志, 2008, 35(1): 62-64.
[11] 华丽,邹德荣,. 小肠黏膜下层修复骨组织缺损的研究进展[J]. 国际口腔医学杂志, 2007, 34(04): 268-270.
[12] 武影. 乙二胺四乙酸与牙周组织修复[J]. 国际口腔医学杂志, 2004, 31(S1): -.
[13] 张勇杰. 组织工程神经导管在外周神经再生过程中的应用[J]. 国际口腔医学杂志, 2002, 29(02): -.
[14] 尚政军,李金荣,李祖兵. Smad3基因及其产物与创伤修复[J]. 国际口腔医学杂志, 2001, 28(05): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .