国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (5): 540-545.doi: 10.7518/gjkq.2019075

• 综述 • 上一篇    下一篇

非编码RNA在牙源性干细胞成牙本质向分化中作用的研究进展

张凯莹1,房付春1,2,吴补领1,2()   

  1. 1. 南方医科大学南方医院口腔科 广州 510515
    2. 南方医科大学口腔医学院 广州 510515
  • 收稿日期:2018-11-18 修回日期:2019-05-18 出版日期:2019-09-01 发布日期:2019-09-10
  • 通讯作者: 吴补领
  • 作者简介:张凯莹,学士,Email: 804866294@qq.com
  • 基金资助:
    国家自然科学基金(81870755);国家自然科学基金(81600882)

Research progress on non-coding RNA in odontoblastic differentiation of dental tissue-derived stem cells

Zhang Kaiying1,Fang Fuchun1,2,Wu Buling1,2()   

  1. 1. Dept. of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
    2. College of Stomatology, Southern Medical University, Guangzhou 510515, China
  • Received:2018-11-18 Revised:2019-05-18 Online:2019-09-01 Published:2019-09-10
  • Contact: Buling Wu
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81870755);This study was supported by National Natural Science Foundation of China(81600882)

摘要:

牙源性干细胞是从口腔组织中分离出来的成体干细胞,具有自我更新和多向分化的潜能。成牙本质向分化作为产生修复性牙本质的重要防御反应,其过程涉及一系列转录及转录后的基因表达调控。多项研究证实非编码RNA(ncRNA)在牙源性干细胞特别是牙髓干细胞成牙本质向分化过程中发挥了重要作用,是细胞分化的重要调控靶点,以维持细胞分化特性。新研究技术体系的建立使得ncRNA的调控机制得以进一步阐明。本文从功能、调控的靶基因及通路等方面,对目前ncRNA在牙源性干细胞成牙本质向分化过程中的相关研究进行综述。

关键词: 牙源性干细胞, 成牙本质向分化, 非编码RNA

Abstract:

Dental tissue-derived stem cells, adult stem cells obtained from dental tissues, exhibit self-renewal and multiple differentiation potentials. Odontoblastic differentiation, as an important generation procedure of reparative dentin, is modulated by many transcriptional and post-transcriptional factors. Non-coding RNAs (ncRNAs) are thought to play an important role in the odontoblastic differentiation of dental tissue-derived stem cells, especially dental pulp stem cells. ncRNAs are crucial to the regulation of differentiation and maintenance of cell differentiation characteristics. The developments in research technologies enable the regulatory mechanism of ncRNAs to be intensively and furtherly elucidated. Focusing on the function, regulation of target genes and pathways, we reviewed the mechanism of ncRNAs during the odontoblastic differentiation of dental tissue-derived stem cells.

Key words: dental tissue-derived stem cell, odontoblastic differentiation, non-coding RNA

中图分类号: 

  • Q254

表 1

ncRNA参与牙源性干细胞成牙本质向分化调控"

类型 名称 细胞 调控水平 表达调控 影响* 可能的靶基因或作用通路 参考文献
lncRNA DANCR 人DPSC 转录 上调 抑制 Wnt/β-连环蛋白 Chen等[14]
lncRNA H19 人DPSC 表观遗传 上调 促进 H19/SAHH途径调控DNMT3B介导的DLX3d基因 Zeng等[16]
甲基化和表达
lncRNA H19 人SCAP 转录 上调 促进 H19/SPAG9信号通路,H19作为ceRNA竞争性结 Li等[17]
合miR-141,调控MAPK信号通路
lncRNA STL 人DPSC 转录后 上调 促进 可能通过NQO1及ERO1L发挥调控作用 Shi等[18]
lncRNA - 鼠牙间充 转录后 108个上调,36 Zheng等[19]
质干细胞 个下调
miRNA miR-21 人DPSC 转录后 上调 促进 miR-21/STAT3信号通路 Xu等[25]
miRNA miR-223-3p 人DPSC 转录后 上调 促进 靶向作用于SMAD3,抑制DSPP、DMP1基因 Huang等[26]
miRNA miR-143-5p 人DPSC 转录后 下调 促进 OPG/RANKL信号通路,靶向作用于RUNX2 Zhan等[28]
miRNA miR-143-5p 人DPSC 转录后 下调 促进 靶向作用于MAPK14、p38 MAPK信号通路 Wang等[27]
miRNA miR-3065-5p 鼠DPSC 转录后 上调 促进 靶向作用于BMPR2 Lin等[30]
circRNA 鼠牙乳头 转录后 3 255个上调, 占云燕等[32]
细胞 809个下调
[1] 周洁, 王颖, 张雷 , 等. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018,45(3):280-285.
Zhou J, Wang Y, Zhang L , et al. Characteristics of dental tissue-derived stem cells and their application in bone tissue engineering[J]. Int J Stomatol, 2018,45(3):280-285.
[2] Nuti N, Corallo C, Chan BM , et al. Multipotent differentiation of human dental pulp stem cells: a literature review[J]. Stem Cell Rev, 2016,12(5):511-523.
[3] Lee HK, Park JW, Seo YM , et al. Odontoblastic inductive potential of epithelial cells derived from human deciduous dental pulp[J]. J Mol Histol, 2016,47(3):345-351.
[4] 张鑫, 汪成林, 杨静 , 等. 牙髓干细胞的表观遗传调控[J]. 国际口腔医学杂志, 2018,45(3):261-266.
Zhang X, Wang CL, Yang J , et al. Epigenetic regulation in dental pulp stem cells[J]. Int J Stomatol, 2018,45(3):261-266.
[5] Liz J , Esteller M. lncRNAs and microRNAs with a role in cancer development[J]. Biochim Biophys Acta, 2016,1859(1):169-176.
[6] Esteller M, Pandolfi PP . The Epitranscriptome of noncoding RNAs in cancer[J]. Cancer Discov, 2017,7(4):359-368.
[7] Vučićević D, Corradin O, Ntini E , et al. Long ncRNA expression associates with tissue-specific enhancers[J]. Cell Cycle, 2015,14(2):253-260.
[8] Quinodoz S, Guttman M . Long noncoding RNAs: an emerging link between gene regulation and nuclear organization[J]. Trends Cell Biol, 2014,24(11):651-663.
[9] 葛逸弘, 房付春, 吴补领 . 长链非编码RNA在间充质干细胞多向分化过程中的调节作用[J]. 国际口腔医学杂志, 2018,45(3):267-271.
Ge YH, Fang FC, Wu BL . Regulate process of long non-coding RNA in multi-differentiation of mesenchymal stem cells[J]. Int J Stomatol, 2018,45(3):267-271.
[10] Rashid F, Shah A, Shan G . Long non-coding RNAs in the cytoplasm[J]. Genomics Proteomics Bioinformatics, 2016,14(2):73-80.
[11] Lee S, Seo HH, Lee CY , et al. Human long noncoding RNA regulation of stem cell potency and differentiation[J]. Stem Cells Int, 2017,2017:6374504.
[12] Kretz M, Webster DE, Flockhart RJ , et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR[J]. Genes Dev, 2012,26(4):338-343.
[13] Zhu L, Xu PC . Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression[J]. Biochem Biophys Res Commun, 2013,432(4):612-617.
[14] Chen L, Song Z, Huang S , et al. lncRNA DANCR suppresses odontoblast-like differentiation of human dental pulp cells by inhibiting wnt/β-catenin pathway[J]. Cell Tissue Res, 2016,364(2):309-318.
[15] Gabory A, Jammes H, Dandolo L . The H19 locus: role of an imprinted non-coding RNA in growth and development[J]. Bioessays, 2010,32(6):473-480.
[16] Zeng L, Sun S, Han D , et al. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells[J]. Cell Signal, 2018,52:65-73.
[17] Li Z, Yan M, Yu Y , et al. LncRNA H19 promotes the committed differentiation of stem cells from apical papilla via miR-141/SPAG9 pathway[J]. Cell Death Dis, 2019,10(2):130.
[18] Shi R, Yang H, Lin X , et al. Analysis of the characteristics and expression profiles of coding and noncoding RNAs of human dental pulp stem cells in hypoxic conditions[J]. Stem Cell Res Ther, 2019,10(1):89.
[19] Zheng Y, Jia L . Long noncoding RNAs related to the odontogenic potential of dental mesenchymal cells in mice[J]. Arch Oral Biol, 2016,67:1-8.
[20] Liu B, Li J, Cairns MJ . Identifying miRNAs, targets and functions[J]. Brief Bioinform, 2014,15(1):1-19.
[21] 郝奕霖, 房付春, 吴补领 . 微小RNA在人牙周膜来源细胞成骨分化中的作用[J]. 国际口腔医学杂志, 2018,45(1):46-49.
Hao YL, Fang FC, Wu BL . Functions of microRNA on the osteogenic differentiation of human periodontal ligament-derived cells[J]. Int J Stomatol, 2018,45(1):46-49.
[22] Vidigal JA, Ventura A . The biological functions of miRNAs: lessons from in vivo studies[J]. Trends Cell Biol, 2015,25(3):137-147.
[23] Nana-Sinkam SP, Croce CM . Clinical applications for microRNAs in cancer[J]. Clin Pharmacol Ther, 2013,93(1):98-104.
[24] Osman A . MicroRNAs in health and disease—basic science and clinical applications[J]. Clin Lab, 2012,58(5/6):393-402.
[25] Xu K, Xiao J, Zheng K , et al. MiR-21/STAT3 signal is involved in odontoblast differentiation of human dental pulp stem cells mediated by TNF-α[J]. Cell Reprogram, 2018,20(2):107-116.
[26] Huang X, Liu F, Hou J , et al. Inflammation-induced overexpression of microRNA-223-3p regulates odontoblastic differentiation of human dental pulp stem cells by targeting SMAD3[J]. Int Endod J, 2019,52(4):491-503.
[27] Wang BL, Wang Z, Nan X , et al. Downregulation of microRNA-143-5p is required for the promotion of odontoblasts differentiation of human dental pulp stem cells through the activation of the mitogen-activated protein kinases 14-dependent p38 mitogen-activated protein kinases signaling pathway[J]. J Cell Physiol, 2019,234(4):4840-4850.
[28] Zhan FL, Liu XY, Wang XB . The role of microRNA-143-5p in the differentiation of dental pulp stem cells into odontoblasts by targeting Runx2 via the OPG/RANKL signaling pathway[J]. J Cell Biochem, 2018,119(1):536-546.
[29] Ma S, Liu G, Jin L , et al. IGF-1/IGF-1R/hsa-let-7c axis regulates the committed differentiation of stem cells from apical papilla[J]. Sci Rep, 2016,6:36922.
[30] Lin C, Zhang Q, Yu S , et al. miR-3065-5p regulates mouse odontoblastic differentiation partially through bone morphogenetic protein receptor type Ⅱ[J]. Biochem Biophys Res Commun, 2018,495(1):493-498.
[31] Granados-Riveron JT, Aquino-Jarquin G . The complexity of the translation ability of circRNAs[J]. Biochim Biophys Acta, 2016,1859(10):1245-1251.
[32] 占云燕, 张皓, 杨国斌 , 等. 小鼠牙乳头细胞向成牙本质细胞向分化过程中环状RNA的表达谱研究[J]. 口腔医学研究, 2018,34(4):371-374.
Zhan YY, Zhang H, Yang GB , et al. Analysis of circle RNA expression profile variation during odontoblastic differentiation of mouse dental papilla cells[J]. J Oral Sci Res, 2018,34(4):371-374.
[33] Zhang J, Liu H, Lin H , et al. Sp1 is a competitive endogenous RNA of Klf4 during odontoblast differentiation[J]. Int J Biochem Cell Biol, 2017,85:159-165.
[34] Li S, Lin C, Zhang J , et al. Quaking promotes the odontoblastic differentiation of human dental pulp stem cells[J]. J Cell Physiol, 2018,233(9):7292-7304.
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 蔡韵竹,朱姝,刘尧,陈旭. 牙源性干细胞用于治疗神经系统疾病的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 255-262.
[3] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[4] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[5] 李媛媛,程斌,王韵. 长链非编码RNA lnc-p26090对口腔鳞状细胞癌细胞糖酵解及增殖的影响[J]. 国际口腔医学杂志, 2018, 45(6): 628-634.
[6] 王伊婷,何永文. 口腔鳞状细胞癌相关长链非编码RNA调控肿瘤细胞上皮-间充质转化的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 635-639.
[7] 韩曈曈,陈乔尔,朱友明. p53相关长链非编码RNA及其与口腔癌的关系[J]. 国际口腔医学杂志, 2018, 45(5): 597-602.
[8] 王丽萍, 查骏, 葛林虎. 非编码RNA在舌鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 420-424.
[9] 宋洪宁, 王旭霞, 张君. 长链非编码RNA的研究进展及其与口腔肿瘤的关系[J]. 国际口腔医学杂志, 2018, 45(4): 425-432.
[10] 陈燕活, 安少锋, 高燕. 硅酸钙类盖髓剂生物学性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 459-464.
[11] 张鑫, 汪成林, 杨静, 叶玲. 牙髓干细胞的表观遗传调控[J]. 国际口腔医学杂志, 2018, 45(3): 261-266.
[12] 葛逸弘, 房付春, 吴补领. 长链非编码RNA在间充质干细胞多向分化过程中的调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 267-271.
[13] 张湘宜, 刘亚丽. 牙源性干细胞的免疫调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 276-279.
[14] 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285.
[15] 陈冬茹 吴莉萍. 低氧诱导因子-1α和反义低氧诱导因子-1α的研究进展[J]. 国际口腔医学杂志, 2016, 43(5): 589-593.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .