国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (4): 444-448.doi: 10.7518/gjkq.2018.04.013
朱宸佑, 魏诗敏, 汪媛婧, 伍颖颖
Zhu Chenyou, Wei Shimin, Wang Yuanjing, Wu Yingying.
摘要: 免疫系统是人体的一道重要防线,参与其中的细胞包括B细胞、T细胞、DC细胞、巨噬细胞等,其中的巨噬细胞在组织损伤、肿瘤、骨改建等过程中起到尤为重要的作用,随着时间的推移,对于巨噬细胞的了解更为深入,但巨噬细胞与生物材料之间的应答仍有很多机理尚未明了。因此本综述主要探讨生物材料与巨噬细胞之间的应答,展望其潜在应用,为基础及临床研究提供新思路。
中图分类号:
[1] | Anderson JM, Rodriguez A, Chang DT.Foreign body reaction to biomaterials[J]. Semin Immunol, 2008, 20(2): 86-100. |
[2] | Trindade R, Albrektsson T, Tengvall P, et al.Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration[J]. Clin Implant Dent Relat Res, 2016, 18(1): 192-203. |
[3] | Sheikh Z, Brooks PJ, Barzilay O, et al.Macrophages, foreign body giant cells and their response to im-plantable biomaterials[J]. Materials (Basel), 2015, 8(9): 5671-5701. |
[4] | Klopfleisch R, Jung F.The pathology of the foreign body reaction against biomaterials[J]. J Biomed Mater Res A, 2017, 105(3): 927-940. |
[5] | Schmidt-Bleek K, Petersen A, Dienelt A, et al.Ini-tiation and early control of tissue regeneration—bone healing as a model system for tissue regenera-tion[J]. Expert Opin Biol Ther, 2014, 14(2): 247-259. |
[6] | Ai-Aql ZS, Alagl AS, Graves DT, et al.Molecular mechanisms controlling bone formation during frac-ture healing and distraction osteogenesis[J]. J Dent Res, 2008, 87(2): 107-118. |
[7] | Matsuno T, Nakamura T, Kuremoto K, et al.Deve-lopment of beta-tricalcium phosphate/collagen sponge composite for bone regeneration[J]. Dent Mater J, 2006, 25(1): 138-144. |
[8] | Geiger M, Li RH, Friess W.Collagen sponges for bone regeneration with rhBMP-2[J]. Adv Drug Deliv Rev, 2003, 55(12): 1613-1629. |
[9] | Chu C, Deng J, Xiang L, et al.Evaluation of epigal-locatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016, 67: 386-394. |
[10] | Chu C, Deng J, Man Y, et al.Evaluation of nanohy-droxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 258-264. |
[11] | Chang MK, Raggatt LJ, Alexander KA, et al.Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo[J]. J Immunol, 2008, 181(2): 1232-1244. |
[12] | Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions[J]. BMC Med, 2011, 9: 66. |
[13] | Xing Z, Lu C, Hu D, et al.Multiple roles for CCR2 during fracture healing[J]. Dis Model Mech, 2010, 3(7/8): 451-458. |
[14] | Claes L, Recknagel S, Ignatius A.Fracture healing under healthy and inflammatory conditions[J]. Nat Rev Rheumatol, 2012, 8(3): 133-143. |
[15] | Einhorn TA.The cell and molecular biology of frac-ture healing[J]. Clin Orthop Relat Res, 1998(355 Suppl): S7-S21. |
[16] | Rifas L.T-cell cytokine induction of BMP-2 regula-tes human mesenchymal stromal cell differentiation and mineralization[J]. J Cell Biochem, 2006, 98(4): 706-714. |
[17] | Sridharan R, Cameron AR, Kelly DJ, et al.Bioma-terial based modulation of macrophage polarization: a review and suggested design principles[J]. Mater Today (Kidlington), 2015, 18(6): 313-325. |
[18] | Das A, Sinha M, Datta S, et al.Monocyte and macro-phage plasticity in tissue repair and regeneration[J]. Am J Pathol, 2015, 185(10): 2596-2606. |
[19] | Miron RJ, Bosshardt DD.OsteoMacs: key players around bone biomaterials[J]. Biomaterials, 2016, 82: 1-19. |
[20] | Martinez FO, Sica A, Mantovani A, et al.Macrophage activation and polarization[J]. Front Biosci, 2008, 13: 453-461. |
[21] | Godwin JW, Pinto AR, Rosenthal NA.Macrophages are required for adult salamander limb regeneration[J]. Proc Natl Acad Sci USA, 2013, 110(23): 9415-9420. |
[22] | Kigerl KA, Gensel JC, Ankeny DP, et al.Identifica-tion of two distinct macrophage subsets with diver-gent effects causing either neurotoxicity or regenera-tion in the injured mouse spinal cord[J]. J Neurosci, 2009, 29(43): 13435-13444. |
[23] | Sinder BP, Pettit AR, McCauley LK. Macrophages: their emerging roles in bone[J]. J Bone Miner Res, 2015, 30(12): 2140-2149. |
[24] | Shi M, Wang C, Wang Y, et al.Deproteinized bo-vine bone matrix induces osteoblast differentiation via macrophage polarization[J]. J Biomed Mater Res A, 2018, 106(5): 1236-1246. |
[25] | Chen Z, Klein T, Murray RZ, et al.Osteoimmunomo-dulation for the development of advanced bone bio-materials[J]. Mater Today (Kidlington), 2016, 19(6): 304-321. |
[26] | Chu C, Deng J, Sun X, et al.Collagen membrane and immune response in guided bone regeneration: recent progress and perspectives[J]. Tissue Eng Part B Rev, 2017, 23(5): 421-435. |
[27] | Batoon L, Millard SM, Raggatt LJ, et al.Osteomacs and bone regeneration[J]. Curr Osteoporos Rep, 2017, 15(4): 385-395. |
[28] | Parfitt AM.The bone remodeling compartment: a circulatory function for bone lining cells[J]. J Bone Miner Res, 2001, 16(9): 1583-1585. |
[29] | Henson PM, Hume DA.Apoptotic cell removal in development and tissue homeostasis[J]. Trends Im-munol, 2006, 27(5): 244-250. |
[30] | Sadtler K, Estrellas K, Allen BW, et al.Developing a pro-regenerative biomaterial scaffold micro-environment requires T helper 2 cells[J]. Science, 2016, 352(6283): 366-370. |
[31] | Sicari BM, Rubin JP, Dearth CL, et al.An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss[J]. Sci Transl Med, 2014, 6(234): 234-258. |
[32] | Chen Z, Bachhuka A, Han S, et al.Tuning chemistry and topography of nanoengineered surfaces to mani-pulate immune response for bone regeneration app-lications[J]. ACS Nano, 2017, 11(5): 4494-4506. |
[33] | Elgali I, Turri A, Xia W, et al.Guided bone re-generation using resorbable membrane and different bone substitutes: early histological and molecular events[J]. Acta Biomater, 2016, 29: 409-423. |
[34] | Spiller KL, Nassiri S, Witherel CE, et al.Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and en-hance vascularization of bone scaffolds[J]. Bioma-terials, 2015, 37: 194-207. |
[35] | Mathew A, Vaquette C, Hashimi S, et al.Antimicro-bial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration[J]. Adv Healthc Mater, 2017, 6(10). doi: 10.1002/adhm. 201601345. |
[1] | 廖洪林,方仲瀚,张艳艳,刘飞,沈颉飞. 牙种植术后三叉神经创伤性神经病理性疼痛的诊断与防治[J]. 国际口腔医学杂志, 2023, 50(6): 729-738. |
[2] | 刘云通,刘畅,高丽钞,罗瑜雪,曹钰彬,华成舸. 术后下牙槽神经功能障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 479-484. |
[3] | 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158. |
[4] | 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250. |
[5] | 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126. |
[6] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[7] | 吴洁林,高莺. 硬腭获取游离软组织移植物的应用进展[J]. 国际口腔医学杂志, 2020, 47(6): 686-692. |
[8] | 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483. |
[9] | 刘晔,洪润丹,王志国,刘涵云,孟琛达,王茹,徐全臣. 人单核细胞和外周血单个核细胞衍生的巨噬细胞极化特性的比较[J]. 国际口腔医学杂志, 2020, 47(3): 286-292. |
[10] | 于婉琦,周延民,赵静辉. 口腔种植体新材料的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 488-496. |
[11] | 王美洁,谭欣,赵雨薇,于海洋. 即刻种植和传统种植对术后疼痛影响的对比研究[J]. 国际口腔医学杂志, 2019, 46(3): 292-296. |
[12] | 曹焜,李家锋,孙玉华,鲍强,卢秋宁,唐巍. 下颌下窝的锥形束CT影像分析[J]. 国际口腔医学杂志, 2019, 46(2): 209-212. |
[13] | 向琳,陈晖璐,袁影,张勤,辛娜,宫苹. 降钙素基因相关肽对种植体周围神经、血管再生及骨结合的作用[J]. 国际口腔医学杂志, 2018, 45(5): 509-515. |
[14] | 米梦梦,夏海斌,王敏. 釉基质蛋白衍生物在口腔种植中的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 522-526. |
[15] | 林冬佳, 彭志翔, 高燕. 粪肠球菌与巨噬细胞相互作用机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 433-438. |
|