国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (4): 444-448.doi: 10.7518/gjkq.2018.04.013

• 综述 • 上一篇    下一篇

巨噬细胞在骨组织修复中的研究进展

朱宸佑, 魏诗敏, 汪媛婧, 伍颖颖   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2017-11-20 修回日期:2018-04-10 出版日期:2018-07-02 发布日期:2018-07-02
  • 通讯作者: 伍颖颖,副教授,博士,Email:yywdentist@163.com
  • 作者简介:朱宸佑,学士,Email:tn00992786@qq.com
  • 基金资助:
    四川大学优秀青年学者科研基金(2017SCU04A21); 四川省科技厅苗子工程(2018RZ0088); 四川大学大学生创新创业训练计划(C2018103082)

Research progress on macrophage in bone tissue repair

Zhu Chenyou, Wei Shimin, Wang Yuanjing, Wu Yingying.   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-11-20 Revised:2018-04-10 Online:2018-07-02 Published:2018-07-02
  • Supported by:
    This study was supported by Program for Sichuan University Excellent Young Scholars Research Fund (2017SCU04A21), Sichuan Provincial Department of Science and Technology Talent Project (2018RZ0088), and Sichuan University Innovation and Entrepreneurship Training Program under Grants (C2018103082).

摘要: 免疫系统是人体的一道重要防线,参与其中的细胞包括B细胞、T细胞、DC细胞、巨噬细胞等,其中的巨噬细胞在组织损伤、肿瘤、骨改建等过程中起到尤为重要的作用,随着时间的推移,对于巨噬细胞的了解更为深入,但巨噬细胞与生物材料之间的应答仍有很多机理尚未明了。因此本综述主要探讨生物材料与巨噬细胞之间的应答,展望其潜在应用,为基础及临床研究提供新思路。

关键词: 巨噬细胞, 骨组织修复, 牙种植, 引导性骨再生

Abstract: The immune system is an important barrier for defense in the human body. This system includes B cells, T cells, dendritic cells (DC), and macrophages, which play a pivotal role in tissue injury, tumor, and bone remodeling. The understanding of macrophages has improved in the past years, but numerous mechanisms between macrophages and biomaterials remain largely unknown. Thus, the present study discusses the response between macrophages and biomaterials and predicts their potential application to provide new ideas for basic and clinical research.

Key words: macrophage, bone repair, dental implant, guided bone regeneration

中图分类号: 

  • Q813
[1] Anderson JM, Rodriguez A, Chang DT.Foreign body reaction to biomaterials[J]. Semin Immunol, 2008, 20(2): 86-100.
[2] Trindade R, Albrektsson T, Tengvall P, et al.Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration[J]. Clin Implant Dent Relat Res, 2016, 18(1): 192-203.
[3] Sheikh Z, Brooks PJ, Barzilay O, et al.Macrophages, foreign body giant cells and their response to im-plantable biomaterials[J]. Materials (Basel), 2015, 8(9): 5671-5701.
[4] Klopfleisch R, Jung F.The pathology of the foreign body reaction against biomaterials[J]. J Biomed Mater Res A, 2017, 105(3): 927-940.
[5] Schmidt-Bleek K, Petersen A, Dienelt A, et al.Ini-tiation and early control of tissue regeneration—bone healing as a model system for tissue regenera-tion[J]. Expert Opin Biol Ther, 2014, 14(2): 247-259.
[6] Ai-Aql ZS, Alagl AS, Graves DT, et al.Molecular mechanisms controlling bone formation during frac-ture healing and distraction osteogenesis[J]. J Dent Res, 2008, 87(2): 107-118.
[7] Matsuno T, Nakamura T, Kuremoto K, et al.Deve-lopment of beta-tricalcium phosphate/collagen sponge composite for bone regeneration[J]. Dent Mater J, 2006, 25(1): 138-144.
[8] Geiger M, Li RH, Friess W.Collagen sponges for bone regeneration with rhBMP-2[J]. Adv Drug Deliv Rev, 2003, 55(12): 1613-1629.
[9] Chu C, Deng J, Xiang L, et al.Evaluation of epigal-locatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016, 67: 386-394.
[10] Chu C, Deng J, Man Y, et al.Evaluation of nanohy-droxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 258-264.
[11] Chang MK, Raggatt LJ, Alexander KA, et al.Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo[J]. J Immunol, 2008, 181(2): 1232-1244.
[12] Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions[J]. BMC Med, 2011, 9: 66.
[13] Xing Z, Lu C, Hu D, et al.Multiple roles for CCR2 during fracture healing[J]. Dis Model Mech, 2010, 3(7/8): 451-458.
[14] Claes L, Recknagel S, Ignatius A.Fracture healing under healthy and inflammatory conditions[J]. Nat Rev Rheumatol, 2012, 8(3): 133-143.
[15] Einhorn TA.The cell and molecular biology of frac-ture healing[J]. Clin Orthop Relat Res, 1998(355 Suppl): S7-S21.
[16] Rifas L.T-cell cytokine induction of BMP-2 regula-tes human mesenchymal stromal cell differentiation and mineralization[J]. J Cell Biochem, 2006, 98(4): 706-714.
[17] Sridharan R, Cameron AR, Kelly DJ, et al.Bioma-terial based modulation of macrophage polarization: a review and suggested design principles[J]. Mater Today (Kidlington), 2015, 18(6): 313-325.
[18] Das A, Sinha M, Datta S, et al.Monocyte and macro-phage plasticity in tissue repair and regeneration[J]. Am J Pathol, 2015, 185(10): 2596-2606.
[19] Miron RJ, Bosshardt DD.OsteoMacs: key players around bone biomaterials[J]. Biomaterials, 2016, 82: 1-19.
[20] Martinez FO, Sica A, Mantovani A, et al.Macrophage activation and polarization[J]. Front Biosci, 2008, 13: 453-461.
[21] Godwin JW, Pinto AR, Rosenthal NA.Macrophages are required for adult salamander limb regeneration[J]. Proc Natl Acad Sci USA, 2013, 110(23): 9415-9420.
[22] Kigerl KA, Gensel JC, Ankeny DP, et al.Identifica-tion of two distinct macrophage subsets with diver-gent effects causing either neurotoxicity or regenera-tion in the injured mouse spinal cord[J]. J Neurosci, 2009, 29(43): 13435-13444.
[23] Sinder BP, Pettit AR, McCauley LK. Macrophages: their emerging roles in bone[J]. J Bone Miner Res, 2015, 30(12): 2140-2149.
[24] Shi M, Wang C, Wang Y, et al.Deproteinized bo-vine bone matrix induces osteoblast differentiation via macrophage polarization[J]. J Biomed Mater Res A, 2018, 106(5): 1236-1246.
[25] Chen Z, Klein T, Murray RZ, et al.Osteoimmunomo-dulation for the development of advanced bone bio-materials[J]. Mater Today (Kidlington), 2016, 19(6): 304-321.
[26] Chu C, Deng J, Sun X, et al.Collagen membrane and immune response in guided bone regeneration: recent progress and perspectives[J]. Tissue Eng Part B Rev, 2017, 23(5): 421-435.
[27] Batoon L, Millard SM, Raggatt LJ, et al.Osteomacs and bone regeneration[J]. Curr Osteoporos Rep, 2017, 15(4): 385-395.
[28] Parfitt AM.The bone remodeling compartment: a circulatory function for bone lining cells[J]. J Bone Miner Res, 2001, 16(9): 1583-1585.
[29] Henson PM, Hume DA.Apoptotic cell removal in development and tissue homeostasis[J]. Trends Im-munol, 2006, 27(5): 244-250.
[30] Sadtler K, Estrellas K, Allen BW, et al.Developing a pro-regenerative biomaterial scaffold micro-environment requires T helper 2 cells[J]. Science, 2016, 352(6283): 366-370.
[31] Sicari BM, Rubin JP, Dearth CL, et al.An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss[J]. Sci Transl Med, 2014, 6(234): 234-258.
[32] Chen Z, Bachhuka A, Han S, et al.Tuning chemistry and topography of nanoengineered surfaces to mani-pulate immune response for bone regeneration app-lications[J]. ACS Nano, 2017, 11(5): 4494-4506.
[33] Elgali I, Turri A, Xia W, et al.Guided bone re-generation using resorbable membrane and different bone substitutes: early histological and molecular events[J]. Acta Biomater, 2016, 29: 409-423.
[34] Spiller KL, Nassiri S, Witherel CE, et al.Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and en-hance vascularization of bone scaffolds[J]. Bioma-terials, 2015, 37: 194-207.
[35] Mathew A, Vaquette C, Hashimi S, et al.Antimicro-bial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration[J]. Adv Healthc Mater, 2017, 6(10). doi: 10.1002/adhm. 201601345.
[1] 廖洪林,方仲瀚,张艳艳,刘飞,沈颉飞. 牙种植术后三叉神经创伤性神经病理性疼痛的诊断与防治[J]. 国际口腔医学杂志, 2023, 50(6): 729-738.
[2] 刘云通,刘畅,高丽钞,罗瑜雪,曹钰彬,华成舸. 术后下牙槽神经功能障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 479-484.
[3] 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158.
[4] 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250.
[5] 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126.
[6] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[7] 吴洁林,高莺. 硬腭获取游离软组织移植物的应用进展[J]. 国际口腔医学杂志, 2020, 47(6): 686-692.
[8] 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483.
[9] 刘晔,洪润丹,王志国,刘涵云,孟琛达,王茹,徐全臣. 人单核细胞和外周血单个核细胞衍生的巨噬细胞极化特性的比较[J]. 国际口腔医学杂志, 2020, 47(3): 286-292.
[10] 于婉琦,周延民,赵静辉. 口腔种植体新材料的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 488-496.
[11] 王美洁,谭欣,赵雨薇,于海洋. 即刻种植和传统种植对术后疼痛影响的对比研究[J]. 国际口腔医学杂志, 2019, 46(3): 292-296.
[12] 曹焜,李家锋,孙玉华,鲍强,卢秋宁,唐巍. 下颌下窝的锥形束CT影像分析[J]. 国际口腔医学杂志, 2019, 46(2): 209-212.
[13] 向琳,陈晖璐,袁影,张勤,辛娜,宫苹. 降钙素基因相关肽对种植体周围神经、血管再生及骨结合的作用[J]. 国际口腔医学杂志, 2018, 45(5): 509-515.
[14] 米梦梦,夏海斌,王敏. 釉基质蛋白衍生物在口腔种植中的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 522-526.
[15] 林冬佳, 彭志翔, 高燕. 粪肠球菌与巨噬细胞相互作用机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 433-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .