国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (4): 488-496.doi: 10.7518/gjkq.2019067
• 综述 • 上一篇
Yu Wanqi,Zhou Yanmin,Zhao Jinghui()
摘要:
目前种植义齿已经广泛应用于牙列缺损和牙列缺失的患者,钛及钛合金因其具有良好的生物相容性、力学强度及耐腐蚀性,而成为口腔种植体的首选材料。但随着材料学的发展和处理、加工技术的进步,新的口腔种植体材料层出不穷,逐渐进入到口腔种植学者的视线。新出现的材料如新型钛合金、钽基金属、金属玻璃、氧化锆、硅灰石、氮化硅、聚醚醚酮等,这些材料在性能和诱导成骨方面各有其特点。本文就近年口腔种植体新材料的研究现状进行综述。
中图分类号:
[1] | Wang Y, Yu HJ, Chen CZ , et al. Review of the biocom-patibility of micro-arc oxidation coated titanium alloys[J]. Mater Des, 2015,85:640-652. |
[2] | Quirynen M, Al-Nawas B, Meijer HJ , et al. Small-diameter titanium Grade Ⅳ and titanium-zirconium implants in edentulous mandibles: three-year results from a double-blind, randomized controlled trial[J]. Clin Oral Implants Res, 2015,26(7):831-840. |
[3] | 马凯, 赵宝红, 邓春富 . 医用钛及钛合金牙种植体生物相容性及其相关抗菌性能研究进展[J]. 中国实用口腔科杂志, 2016,9(7):441-445. |
Ma K, Zhao BH, Deng CF . Research advances on the biocompatibility and related antibacterial properties of biomedical titanium and titanium alloy dental implants[J]. Chin J Pract Stomatol, 2016,9(7):441-445. | |
[4] |
Neoh KG, Hu XF, Zheng D , et al. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces[J]. Biomaterials, 2012,33(10):2813-2822.
doi: 10.1016/j.biomaterials.2012.01.018 |
[5] | Salou L, Hoornaert A, Louarn G , et al. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits[J]. Acta Biomater, 2015,11:494-502. |
[6] | Saini M, Singh Y, Arora P , et al. Implant biomaterials: a comprehensive review[J]. World J Clin Cases, 2015,3(1):52-57. |
[7] | Pylypchuk IeV, Petranovskaya AL, Gorbyk PP , et al. Biomimetic hydroxyapatite growth on functionalized surfaces of Ti-6Al-4V and Ti-Zr-Nb alloys[J]. Nanoscale Res Lett, 2015,10(1):1017. |
[8] | Lee WT, Koak JY, Lim YJ , et al. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants[J]. J Biomed Mater Res Part B Appl Biomater, 2012,100(4):1044-1052. |
[9] | Wachi T, Shuto T, Shinohara Y , et al. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption[J]. Toxicology, 2015,327:1-9. |
[10] | Goutam M, Giriyapura C, Mishra SK , et al. Titanium allergy: a literature review[J]. Indian J Dermatol, 2014,59(6):630. |
[11] | Cordeiro JM, Barão VAR . Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants[J]. Mater Sci Eng C Mater Biol Appl, 2017,71:1201-1215. |
[12] | Osman RB, Swain MV . A critical review of dental implant materials with an emphasis on titanium versus zirconia[J]. Materials (Basel), 2015,8(3):932-958. |
[13] | Nazari KA, Nouri A, Hilditch T . Mechanical properties and microstructure of powder metallurgy Ti- xNb-yMo alloys for implant materials[J]. Mater Des, 2015,88:1164-1174. |
[14] | Revathi A, Borrás AD, Muñoz AI , et al. Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:1354-1368. |
[15] | Gómez-Florit M, Ramis JM, Xing R , et al. Differential response of human gingival fibroblasts to titanium- and titanium-zirconium-modified surfaces[J]. J Periodont Res, 2014,49(4):425-436. |
[16] | Grandin HM, Berner S, Dard M . A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants[J]. Materials, 2012,5(8):1348-1360. |
[17] | Wen B, Zhu F, Li Z , et al. The osseointegration behavior of titanium-zirconium implants in ovariecto-mized rabbits[J]. Clin Oral Implants Res, 2014,25(7):819-825. |
[18] | Gottlow J, Dard M, Kjellson F , et al. Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig[J]. Clin Implant Dent Relat Res, 2012,14(4):538-545. |
[19] | Altuna P, Lucas-Taulé E, Gargallo-Albiol J , et al. Clinical evidence on titanium-zirconium dental implants: a systematic review and Meta-analysis[J]. Int J Oral Maxillofac Surg, 2016,45(7):842-850. |
[20] | Iegami CM, Uehara PN, Sesma N , et al. Survival rate of titanium-zirconium narrow diameter dental implants versus commercially pure titanium narrow diameter dental implants: a systematic review[J]. Clin Implant Dent Relat Res, 2017,19(6):1015-1022. |
[21] | Fojt J, Joska L, Malek J , et al. Corrosion behavior of Ti-39Nb alloy for dentistry[J]. Mater Sci Eng C Mater Biol Appl, 2015,56:532-537. |
[22] | de Andrade DP, de Vasconcellos LM, Carvalho IC , et al. Titanium-35niobium alloy as a potential material for biomedical implants: in vitro study[J]. Mater Sci Eng C Mater Biol Appl, 2015,56:538-544. |
[23] | do Prado RF, Rabêlo SB, de Andrade DP , et al. Porous titanium and Ti-35Nb alloy: effects on gene expression of osteoblastic cells derived from human alveolar bone[J]. J Mater Sci Mater Med, 2015,26(11):259. |
[24] | Liu XT, Chen SY, Tsoi JKH , et al. Binary titanium alloys as dental implant materials-a review[J]. Regen Biomater, 2017,4(5):315-323. |
[25] | Challa VS, Mali S, Misra RD . Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V[J]. J Biomed Mater Res A, 2013,101(7):2083-2089. |
[26] |
Lee J, Hurson S, Tadros H , et al. Crestal remodelling and osseointegration at surface-modified commercially pure titanium and titanium alloy implants in a canine model[J]. J Clin Periodontol, 2012,39(8):781-788.
doi: 10.1111/j.1600-051X.2012.01905.x |
[27] | Miura K, Yamada N, Hanada S , et al. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus[J]. Acta Biomater, 2011,7(5):2320-2326. |
[28] | Takahashi K, Shiraishi N, Ishiko-Uzuka R , et al. Biomechanical evaluation of Ti-Nb-Sn alloy implants with a low Young’s modulus[J]. Int J Mol Sci, 2015,16(3):5779-5788. |
[29] | Kim HJ, Jeong YH, Choe HC , et al. Surface morphology of TiN-coated nanotubular Ti-25Ta-xZr alloys for dental implants prepared by RF sputtering[J]. Thin Solid Films, 2013,549:131-134. |
[30] | Kim HJ, Choe HC . Electrochemical and sputtering deposition of hydroxyapatite film on nanotubular Ti-25Ta-xZr alloys[J]. J Nanosci Nanotechnol, 2014,14(11):8405-8410. |
[31] | Ozan S, Lin JX, Li YC , et al. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices[J]. Acta Biomater, 2015,20:176-187. |
[32] | Ribeiro AL, Hammer P, Vaz LG , et al. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study[J]. Biomed Mater, 2013,8(6):065005. |
[33] | Golvano I, Garcia I, Conde A , et al. Influence of fluoride content and pH on corrosion and tribocorrosion behaviour of Ti13Nb13Zr alloy in oral envi-ronment[J]. J Mech Behav Biomed Mater, 2015,49:186-196. |
[34] | Cheng YC, Hu J, Zhang CB , et al. Corrosion behavior of novel Ti-24Nb-4Zr-7.9Sn alloy for dental implant applications in vitro[J]. J Biomed Mater Res Part B Appl Biomater, 2013,101(2):287-294. |
[35] | Nune KC, Misra RD, Li SJ , et al. Osteoblast cellular activity on low elastic modulus Ti-24Nb-4Zr-8Sn alloy[J]. Dent Mater, 2017,33(2):152-165. |
[36] |
Guo YY, Chen DS, Cheng MQ , et al. The bone tissue compatibility of a new Ti35Nb2Ta3Zr alloy with a low Young’s modulus[J]. Int J Mol Med, 2013,31(3):689-697.
doi: 10.3892/ijmm.2013.1249 |
[37] | Stenlund P, Omar O, Brohede U , et al. Bone response to a novel Ti-Ta-Nb-Zr alloy[J]. Acta Biomater, 2015,20:165-175. |
[38] | Ozan S, Lin JX, Li YC , et al. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications[J]. J Mech Behav Biomed Mater, 2017,75:119-127. |
[39] | Meng X, Wang XN, Guo Y , et al. Biocompatibility evaluation of a newly developed Ti-Nb-Zr-Ta-Si alloy implant[J]. J Biomater Tissue Eng, 2016,6(11):861-869. |
[40] | Wang XN, Meng X, Chu SL , et al. Osseointegration behavior of novel Ti-Nb-Zr-Ta-Si alloy for dental implants: an in vivo study[J]. J Mater Sci Mater Med, 2016,27(9):139. |
[41] | 路荣建, 刘洪臣 . 多孔钽作为骨植入材料的研究进展[J]. 中华老年口腔医学杂志, 2013,11(3):173-176. |
Lu RJ, Liu HC . The research progress of porous tantalum as bone implant material[J]. Chin J Geriatr Dent, 2013,11(3):173-176. | |
[42] | Liu YD, Bao CY, Wismeijer D , et al. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implanto- logy[J]. Mater Sci Eng C Mater Biol Appl, 2015,49:323-329. |
[43] | Bencharit S, Byrd WC, Altarawneh S , et al. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants[J]. Clin Implant Dent Relat Res, 2014,16(6):817-826. |
[44] | Mohandas G, Oskolkov N , McMahon MT, et al. Porous tantalum and tantalum oxide nanoparticles for regenerative medicine[J]. Acta Neurobiol Exp (Wars), 2014,74(2):188-196. |
[45] |
Kim DG, Huja SS, Tee BC , et al. Bone ingrowth and initial stability of titanium and porous tantalum dental implants: a pilot canine study[J]. Implant Dent, 2013,22(4):399-405.
doi: 10.1097/ID.0b013e31829b17b5 |
[46] | Li J, Shi LL, Zhu ZD , et al. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular respo- nses[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(4):2113-2121. |
[47] | Li J, Ai HJ . The responses of endothelial cells to Zr61 Ti2Cu25Al12 metallic glass in vitro and in vivo[J]. Mater Sci Eng C Mater Biol Appl, 2014,40:189-196. |
[48] | Regish KM, Sharma D, Prithviraj DR . An overview of immediate root analogue zirconia implants[J]. J Oral Implantol, 2013,39(2):225-233. |
[49] | 韩建民, 林红, 洪光 . 氧化锆种植体的动物及临床应用进展[J]. 中华口腔医学杂志, 2013,48(12):769-771. |
Han JM, Lin H, Hong G . Zirconia dental implant: a review of literature on clinical application and animal studies[J]. Chin J Stomatol, 2013,48(12):769-771. | |
[50] | Sanon C, Chevalier J, Douillard T , et al. A new testing protocol for zirconia dental implants[J]. Dent Mater, 2015,31(1):15-25. |
[51] | Assal PA . The osseointegration of zirconia dental implants[J]. Schweiz Monatsschr Zahnmed, 2013,123(7/8):644-654. |
[52] |
Bankoğlu Güngör M, Aydın C, Yılmaz H , et al. An overview of zirconia dental implants: basic properties and clinical application of three cases[J]. J Oral Implantol, 2014,40(4):485-494.
doi: 10.1563/AAID-JOI-D-12-00109 |
[53] | Gahlert M, Roehling S, Sprecher CM , et al. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae[J]. Clin Oral Implants Res, 2012,23(3):281-286. |
[54] | Winkelhoff A, Cune M . Zirconia dental implants: a clinical, radiographic, and microbiologic evaluation up to 3 years[J]. Int J Oral Maxillofac Implants, 2014,29(4):914-920. |
[55] | Chen YW, Moussi J, Drury JL , et al. Zirconia in biomedical applications[J]. Expert Rev Med Devices, 2016,13(10):945-963. |
[56] | Goyos-Ball L, García-Tuñón E, Fernández-García E , et al. Mechanical and biological evaluation of 3D printed 10CeTZP-Al2O3 structures[J]. J Eur Ceram Soc, 2017,37(9):3151-3158. |
[57] | Lopez-Píriz R, Fernández A, Goyos-Ball L , et al. Performance of a new Al2O3/Ce-TZP ceramic nanocomposite dental implant: a pilot study in dogs[J]. Materials (Basel), 2017,10(6). doi: 10.3390/ma10060614. |
[58] |
Saadaldin SA, Dixon SJ, Costa DO , et al. Synjournal of bioactive and machinable miserite glass-ceramics for dental implant applications[J]. Dent Mater, 2013,29(6):645-655.
doi: 10.1016/j.dental.2013.03.013 |
[59] |
Saadaldin SA, Rizkalla AS . Synjournal and characterization of wollastonite glass-ceramics for dental implant applications[J]. Dent Mater, 2014,30(3):364-371.
doi: 10.1016/j.dental.2013.12.007 |
[60] | Olofsson J, Grehk TM, Berlind T , et al. Evaluation of silicon nitride as a wear resistant and resorbable alternative for total hip joint replacement[J]. Biomatter, 2012,2(2):94-102. |
[61] | Webster TJ, Patel AA, Rahaman MN , et al. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium im-plants[J]. Acta Biomater, 2012,8(12):4447-4454. |
[62] | Gorth DJ, Puckett S, Ercan B , et al. Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium[J]. Int J Nanomedicine, 2012,7:4829-4840. |
[63] | Badran Z, Struillou X, Hughes FJ , et al. Silicon nitride (Si3N4) implants: the future of dental implantology[J]. J Oral Implantol, 2017,43(3):240-244. |
[64] | Schwitalla A, Müller WD . PEEK dental implants: a review of the literature[J]. J Oral Implantol, 2013,39(6):743-749. |
[65] | Wiesli MG, Özcan M . High-performance polymers and their potential application as medical and oral implant materials: a review[J]. Implant Dent, 2015,24(4):448-457. |
[66] | Al-Rabab’ah M, Hamadneh W, Alsalem I , et al. Use of high performance polymers as dental implant abutments and frameworks: a case series report[J]. J Prosthodont, 2017. doi: 10.1111/jopr.12639. |
[67] | Schwitalla AD, Spintig T, Kallage I , et al. Pressure behavior of different PEEK materials for dental implants[J]. J Mech Behav Biomed Mater, 2016,54:295-304. |
[68] | Almasi D, Iqbal N, Sadeghi M , et al. Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: a review[J]. Int J Biomater, 2016,2016:8202653. |
[69] | Najeeb S, Zafar MS, Khurshid Z , et al. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics[J]. J Prosthodont Res, 2016,60(1):12-19. |
[70] | Ma R, Tang TT . Current strategies to improve the bioactivity of PEEK[J]. Int J Mol Sci, 2014,15(4):5426-5445. |
[71] | Wu XM, Liu XC, Wei J , et al. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies[J]. Int J Nanomedicine, 2012,7:1215-1225. |
[72] |
Wang LX, He S, Wu XM , et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties[J]. Biomaterials, 2014,35(25):6758-6775.
doi: 10.1016/j.biomaterials.2014.04.085 |
[73] | Wang X, Lu T, Wen J , et al. Selective responses of human gingival fibroblasts and bacteria on carbon fiber reinforced polyetheretherketone with multilevel nanostructured TiO2[J]. Biomaterials, 2016,83:207-218. |
[74] | Ayaz EA, Durkan R, Koroglu A , et al. Comparative effect of different polymerization techniques on residual monomer and hardness properties of PMMA- based denture resins[J]. J Appl Biomater Funct Mater, 2014,12(3):228-233. |
[75] | Cuijpers VMJI, Jaroszewicz J, Anil S , et al. Resolution, sensitivity, and in vivo application of high-resolution computed tomography for titanium-coated polymethyl methacrylate (PMMA) dental implants[J]. Clin Oral Implants Res, 2014,25(3):359-365. |
[76] | 李小东, 李新梅, 孙晓晨 , 等. 牙种植高分子材料聚甲基丙烯酸甲酯的生物相容性[J]. 中国组织工程研究, 2015,19(47):7613-7618. |
Li XD, Li XM, Sun XC , et al. Biocompatibility of polymethylmethacrylate as a polymer material for dental implants[J]. Chin J Tissue Eng Res, 2015,19(47):7613-7618. | |
[77] | Chu CN, Liu L, Wang YF , et al. Macrophage phenotype in the epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction[J]. J Tissue Eng Regen Med, 2018,12(6):1499-1507. |
[78] | Chu CN, Deng J, Hou Y , et al. Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:31-36. |
[79] | Chu CN, Deng J, Xiang L , et al. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016,67:386-394. |
[80] | Chu CN, Deng J, Man Y , et al. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017,78:258-264. |
[1] | 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158. |
[2] | 颜愈佳,邹玲. 生物陶瓷类根管封闭剂的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 578-585. |
[3] | 黎敏,华成舸,蒋丽. 提高氧化锆陶瓷粘接性能新技术的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 485-490. |
[4] | 张婧婷,潘旭东,张文云. 遮色层厚度对聚醚醚酮-Crea.lign修复体颜色的影响[J]. 国际口腔医学杂志, 2020, 47(4): 418-423. |
[5] | 鲁雨晴,闵婕,陈昕,刘春煦,董博,岳莉,于海洋. 整体切削的聚醚醚酮可摘局部义齿即刻修复1例[J]. 国际口腔医学杂志, 2020, 47(3): 297-303. |
[6] | 刘春煦,鲁雨晴,贾璐铭,董博,张倩倩,于海洋. 选择性激光熔融与铸造钛合金卡环的模拟摘戴固位力研究[J]. 国际口腔医学杂志, 2020, 47(2): 152-158. |
[7] | 陈昕,毛渤淳,鲁雨晴,董博,朱卓立,岳莉,于海洋. 钴铬合金和聚醚醚酮用于可摘局部义齿支架的三维有限元分析[J]. 国际口腔医学杂志, 2019, 46(5): 526-531. |
[8] | 曹焜,李家锋,孙玉华,鲍强,卢秋宁,唐巍. 下颌下窝的锥形束CT影像分析[J]. 国际口腔医学杂志, 2019, 46(2): 209-212. |
[9] | 侯晔坡,高杰. Er:YAG激光照射对牙科陶瓷材料粘接影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 68-72. |
[10] | 秦胜男,贾慧,李英. 聚醚醚酮在口腔临床中的应用现状[J]. 国际口腔医学杂志, 2018, 45(6): 652-656. |
[11] | 陈曦,于海洋. 聚醚醚酮在口腔种植与修复领域的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 657-665. |
[12] | 徐迅, 黄建生, 甘泽坤, 罗震. 上颌第一磨牙区腭侧骨板的锥形束CT测量结果及其临床意义[J]. 国际口腔医学杂志, 2017, 44(6): 686-690. |
[13] | 张雅蓉, 刘洋, 张玲, 于海洋. 不同切端设计的上前牙瓷贴面受载能力的定量研究[J]. 国际口腔医学杂志, 2017, 44(3): 301-303. |
[14] | 姚陈敏, 周丽群, 黄翠. 前牙磨耗牙色修复材料的选择[J]. 国际口腔医学杂志, 2017, 44(3): 363-367. |
[15] | 苟敏 蔡潇潇. 种植体—基台微间隙对种植体颈部周围骨的影响[J]. 国际口腔医学杂志, 2015, 42(6): 733-738. |
|