国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (6): 657-665.doi: 10.7518/gjkq.2018.06.007
摘要:
聚醚醚酮(PEEK)为线性芳香族高分子化合物,自面世以来,凭借其卓越的力学性能和化学稳定性,广泛应用于航空航天、汽车制造以及精密仪器制造等高科技领域。此外,PEEK材料可靠的生物安全性、适宜的弹性模量、良好的表面性能等特性使得其在医学领域也得到了广泛应用。目前,PEEK在口腔医学领域中的应用正逐渐增多,如作为种植体、临时基台、固定及可摘义齿材料等越来越引起学者的关注。本文就PEEK材料在口腔种植与修复领域的研究进展作一综述。
中图分类号:
[1] |
甘抗, 郭晶, 刘红 . 聚醚醚酮口腔生物材料的研究进展[J]. 口腔颌面修复学杂志, 2014,15(3):172-175.
doi: 10.3969/j.issn.1009-3761.2014.03.012 |
Gan K, Guo J, Liu H . Research progress of polye-theretherketone oral biomaterials[J]. Chin J Prostho-dont, 2014,15(3):172-175.
doi: 10.3969/j.issn.1009-3761.2014.03.012 |
|
[2] | Skinner HB . Composite technology for total hip ar-throplasty[J]. Clin Orthop Relat Res, 1988(235):224-236. |
[3] |
Devine DM, Hahn J, Richards RG , et al. Coating of carbon fiber-reinforced polyetheretherketone implants with titanium to improve bone apposition[J]. J Bio-med Mater Res Part B Appl Biomater, 2013,101(4):591-598.
doi: 10.1002/jbm.b.32861 |
[4] |
Toth JM, Wang M, Estes BT , et al. Polyetherether-ketone as a biomaterial for spinal applications[J]. Biomaterials, 2006,27(3):324-334.
doi: 10.1016/j.biomaterials.2005.07.011 pmid: 16115677 |
[5] |
Nakahara I, Takao M, Bandoh S , et al. In vivo implant fixation of carbon fiber-reinforced PEEK hip pros-theses in an ovine model[J]. J Orthop Res, 2013,31(3):485-492.
doi: 10.1002/jor.22251 pmid: 23097319 |
[6] |
Lee WT, Koak JY, Lim YJ , et al. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants[J]. J Biomed Mater Res Part B Appl Biomater, 2012,100(4):1044-1052.
doi: 10.1002/jbm.b.32669 pmid: 22331553 |
[7] |
Martin RB, Ishida J . The relative effects of collagen fiber orientation, porosity, density, and mineraliza-tion on bone strength[J]. J Biomech, 1989,22(5):419-426.
doi: 10.1016/0021-9290(89)90202-9 pmid: 2777816 |
[8] |
Sano H, Ciucchi B, Matthews WG , et al. Tensile properties of mineralized and demineralized human and bovine dentin[J]. J Dent Res, 1994,73(6):1205-1211.
doi: 10.1177/00220345940730061201 pmid: 8046110 |
[9] |
Sandler J, Werner P, Shaffer MSP , et al. Carbon-nanofibre-reinforced poly(ether ether ketone) com-posites[J]. Compos Part A Appl Sci Manuf, 2002,33(8):1033-1039.
doi: 10.1016/S1359-835X(02)00084-2 |
[10] |
Kern M, Lehmann F . Influence of surface conditioning on bonding to polyetheretherketon (PEEK)[J]. Dent Mater, 2012,28(12):1280-1283.
doi: 10.1016/j.dental.2012.09.010 pmid: 23036863 |
[11] |
Costa-Palau S, Torrents-Nicolas J , Brufau-de Barberà M, et al. Use of polyetheretherketone in the fabrica-tion of a maxillary obturator prosjournal: a clinical report[J]. J Prosth Dent, 2014,112(3):680-682.
doi: 10.1016/j.prosdent.2013.10.026 |
[12] |
文怀兴, 刘杏, 陈威 . 聚醚醚酮复合材料的改性研究及应用进展[J]. 工程塑料应用, 2017,45(1):123-127, 136.
doi: 10.3969/j.issn.1001-3539.2017.01.024 |
Wen HX, Liu X, Chen W . Review on modification research and application of PEEK composites[J]. Eng Plast Appl, 2017,45(1):123-127, 136.
doi: 10.3969/j.issn.1001-3539.2017.01.024 |
|
[13] |
Najeeb S, Bds ZK, Bds SZ , et al. Bioactivity and osseointegration of PEEK are inferior to those of titanium: a systematic review[J]. J Oral Implantol, 2016,42(6):512-516.
doi: 10.1563/aaid-joi-D-16-00072 pmid: 27560166 |
[14] |
Esposito M, Hirsch JM, Lekholm U , et al. Biological factors contributing to failures of osseointegrated oral implants. (Ⅰ). Success criteria and epidemiology[J]. Eur J Oral Sci, 1998,106(1):527-551.
doi: 10.1046/j.0909-8836..t01-2-.x pmid: 9672097 |
[15] | Rupp F, Scheideler L, Olshanska N , et al. Enhancing surface free energy and hydrophilicity through che-mical modification of microstructured titanium im-plant surfaces[J]. J Biomed Mater Res A, 2005,76A(2):323-334. |
[16] |
Le Guéhennec L, Soueidan A, Layrolle P , et al. Sur-face treatments of titanium dental implants for rapid osseointegration[J]. Dent Mater, 2007,23(7):844-854.
doi: 10.1016/j.dental.2006.06.025 pmid: 16904738 |
[17] |
Egusa H, Ko N, Shimazu T , et al. Suspected associa-tion of an allergic reaction with titanium dental im-plants: a clinical report[J]. J Prosthet Dent, 2008,100(5):344-347.
doi: 10.1016/S0022-3913(08)60233-4 |
[18] |
Müller K, Valentine-Thon E . Hypersensitivity to titanium: clinical and laboratory evidence[J]. Neuro Endocrinol Lett, 2006,27(Suppl 1):31-35.
doi: 10.1016/j.neuint.2006.07.003 pmid: 17261997 |
[19] |
Thomas P, Bandl WD, Maier S , et al. Hypersensi-tivity to titanium osteosynjournal with impaired frac-ture healing, eczema, and T-cell hyperresponsiveness in vitro: case report and review of the literature[J]. Contact Derm, 2006,55(4):199-202.
doi: 10.1111/j.1600-0536.2006.00931.x pmid: 16958916 |
[20] | Tschernitschek H, Borchers L, Geurtsen W . Nonal-loyed titanium as a bioinert metal—a review[J]. Quintessence Int, 2005,36(7/8):523-530. |
[21] |
Sicilia A, Cuesta S, Coma G , et al. Titanium allergy in dental implant patients: a clinical study on 1 500 consecutive patients[J]. Clin Oral Implants Res, 2008,19(8):823-835.
doi: 10.1111/j.1600-0501.2008.01544.x pmid: 18705814 |
[22] |
Korabi R, Shemtov-Yona K, Rittel D . On stress/strain shielding and the material stiffness paradigm for dental implants[J]. Clin Implant Dent Relat Res, 2017,19(5):935-943.
doi: 10.1111/cid.12509 pmid: 28608498 |
[23] |
Yildirim M, Fischer H, Marx R , et al. In vivo fracture resistance of implant-supported all-ceramic restora-tions[J]. J Prosthet Dent, 2003,90(4):325-331.
doi: 10.1016/S0022-3913(03)00514-6 pmid: 14564286 |
[24] |
Becker W, Becker BE, Ricci A , et al. A prospective multicenter clinical trial comparing one- and two-stage titanium screw-shaped fixtures with one-stage plasma-sprayed solid-screw fixtures[J]. Clin Implant Dent Relat Res, 2000,2(3):159-165.
doi: 10.1111/j.1708-8208.2000.tb00007.x pmid: 11359261 |
[25] |
Andreiotelli M, Wenz HJ, Kohal RJ . Are ceramic implants a viable alternative to titanium implants? A systematic literature review[J]. Clin Oral Implants Res, 2009,20(Suppl 4):32-47.
doi: 10.1111/j.1600-0501.2009.01785.x pmid: 19663947 |
[26] | Liao K . Performance characterization and modeling of a composite hip prosjournal[J]. Exp Tech, 1994,18(5):33-38. |
[27] |
Kelsey DJ, Springer GS, Goodman SB . Composite implant for bone replacement[J]. J Compos Mater, 1997,31(16):1593-1632.
doi: 10.1177/002199839703101603 |
[28] | Corvelli AA, Biermann PJ, Roberts JC . Design, analysis, and fabrication of a composite segmental bone replacement implant[J]. J Adv Mater, 1997,28(3):2-7. |
[29] |
Panayotov IV, Orti V, Cuisinier F , et al. Polyethere-therketone (PEEK) for medical applications[J]. J Mater Sci Mater Med, 2016,27(7):118.
doi: 10.1007/s10856-016-5731-4 pmid: 27259708 |
[30] |
Fontijn-Tekamp FA, Slagter AP , Van Der Bilt A, et al. Biting and chewing in overdentures, full dentures, and natural dentitions[J]. J Dent Res, 2000,79(7):1519-1524.
doi: 10.1177/00220345000790071501 |
[31] |
Sarot JR, Contar CM, Cruz AC , et al. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method[J]. J Mater Sci Mater Med, 2010,21(7):2079-2085.
doi: 10.1007/s10856-010-4084-7 pmid: 20464460 |
[32] |
Schwitalla AD, Abou-Emara M, Spintig T , et al. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone[J]. J Biomech, 2015,48(1):1-7.
doi: 10.1016/j.jbiomech.2014.11.017 pmid: 25435385 |
[33] |
Wiesli MG, Özcan M . High-performance polymers and their potential application as medical and oral implant materials: a review[J]. Implant Dent, 2015,24(4):448-457.
doi: 10.1097/ID.0000000000000285 pmid: 26035377 |
[34] |
Olivares-Navarrete R, Gittens RA, Schneider JM , et al. Osteoblasts exhibit a more differentiated pheno-type and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone[J]. Spine J, 2012,12(3):265-272.
doi: 10.1016/j.spinee.2012.02.002 pmid: 22424980 |
[35] |
Olivares-Navarrete R, Hyzy SL, Gittens RA , et al. Rough titanium alloys regulate osteoblast production of angiogenic factors[J]. Spine J, 2013,13(11):1563-1570.
doi: 10.1016/j.spinee.2013.03.047 pmid: 23684238 |
[36] |
Olivares-Navarrete R, Hyzy SL, Slosar PJ , et al. Im- plant materials generate different peri-implant in-flammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium prmotes osteo-genic factors[J]. Spine, 2015,40(6):399-404.
doi: 10.1097/BRS.0000000000000778 |
[37] |
Cook SD, Rust-Dawicki AM . Preliminary evaluation of titanium-coated PEEK dental implants[J]. J Oral Implantol, 1995,21(3):176-181.
doi: 10.1109/SBEC.1995.514436 pmid: 8699511 |
[38] |
Najeeb S, Zafar MS, Khurshid Z , et al. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics[J]. J Prosthodont Res, 2016,60(1):12-19.
doi: 10.1016/j.jpor.2015.10.001 |
[39] | Najeeb S, Khurshid Z, Matinlinna JP , et al. Nano-modified PEEK dental implants: bioactive com-posites and surface modification—a review[J]. Int J Dent, 2015,2015:381759. |
[40] |
Ravichandran R, Ng CCh, Liao SS , et al. Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning[J]. Biomed Mater, 2012,7(1):015001.
doi: 10.1088/1748-6041/7/1/015001 pmid: 22156014 |
[41] |
Suska F, Omar O, Emanuelsson L , et al. Enhance-ment of CRF-PEEK osseointegration by plasma-sprayed hydroxyapatite: a rabbit model[J]. J Biomater Appl, 2014,29(2):234-242.
doi: 10.1177/0885328214521669 pmid: 24496230 |
[42] |
Wu XM, Liu XC, Wei J , et al. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies[J]. Int J Nanomedicine, 2012,7:1215-1225.
doi: 10.2147/IJN.S28101 pmid: 3298387 |
[43] |
Sagomonyants KB, Jarman-Smith ML, Devine JN , et al. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium[J]. Biomaterials, 2008,29(11):1563-1572.
doi: 10.1016/j.biomaterials.2007.12.001 pmid: 18199478 |
[44] |
Katzer A, Marquardt H, Westendorf J , et al. Polye-theretherketone—cytotoxicity and mutagenicity in vitro[J]. Biomaterials, 2002,23(8):1749-1759.
doi: 10.1016/S0142-9612(01)00300-3 pmid: 11950045 |
[45] |
Wenz LM, Merritt K, Brown SA , et al. In vitro bio-compatibility of polyetheretherketone and polysul-fone composites[J]. J Biomed Mater Res, 1990,24(2):207-215.
doi: 10.1002/(ISSN)1097-4636 |
[46] | Hallab NJ , McAllister K, Brady M, et al. Macrophage reactivity to different polymers demonstrates particle size- and material-specific reactivity: PEEK-OPTIMA ® particles versus UHMWPE particles in the submicron, micron, and 10 micron size ranges [J]. J Biomed Mater Res Part B Appl Biomater, 2012,100(2):480-492. |
[47] |
Webster TJ, Patel AA, Rahaman MN , et al. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium im-plants[J]. Acta Biomater, 2012,8(12):4447-4454.
doi: 10.1016/j.actbio.2012.07.038 pmid: 22863905 |
[48] |
Al-Rabab’ah M, Hamadneh W, Alsalem I , et al. Use of high performance polymers as dental implant abutments and frameworks: a case series report[J]. J Prosthodont, 2017. doi: 10.1111/jopr.12639.
doi: 10.1111/jopr.12639 pmid: 28513977 |
[49] |
Agustín-Panadero R, Serra-Pastor B , Roig-Vana-clocha A, et al. Mechanical behavior of provisional implant prosthetic abutments[J]. Med Oral Patol Oral Cir Bucal, 2015,20(1):e94-e102.
doi: 10.4317/medoral.19958 pmid: 4320428 |
[50] |
Koutouzis T, Richardson J, Lundgren T . Compara-tive soft and hard tissue responses to titanium and polymer healing abutments[J]. J Oral Implantol, 2011,37(Spec No):174-182.
doi: 10.1563/AAID-JOI-D-09-00102.1 pmid: 20553131 |
[51] |
Hahnel S, Wieser A, Lang R , et al. Biofilm forma-tion on the surface of modern implant abutment materials[J]. Clin Oral Implants Res, 2015,26(11):1297-1301.
doi: 10.1111/clr.12454 pmid: 25060652 |
[52] |
Wu TT, Fan HY, Ma RY , et al. Effect of lubricant on the reliability of dental implant abutment screw joint: an in vitro laboratory and three-dimension finite element analysis[J]. Mater Sci Eng C Mater Biol Appl, 2017,75:297-304.
doi: 10.1016/j.msec.2016.11.041 |
[53] |
Schwitalla AD, Abou-Emara M, Zimmermann T , et al. The applicability of PEEK-based abutment screws[J]. J Mech Behav Biomed Mater, 2016,63:244-251.
doi: 10.1016/j.jmbbm.2016.06.024 |
[54] |
Neumann EA, Villar CC , França FM. Fracture resistance of abutment screws made of titanium, polyetheretherketone, carbon fiber-reinforced polyetheretherketone[J]. Braz Oral Res, 2014, 28.pii:S1806-83242014000100239.
doi: 10.1590/1807-3107BOR-2014.vol28.0028 pmid: 25098826 |
[55] |
Tannous F, Steiner M, Shahin R , et al. Retentive forces and fatigue resistance of thermoplastic resin clasps[J]. Dent Mater, 2012,28(3):273-278.
doi: 10.1016/j.dental.2011.10.016 pmid: 22130464 |
[56] |
Zoidis P, Papathanasiou I, Polyzois G . The use of a modified poly-ether-ether-ketone (PEEK) as an alternative framework material for removable dental prostheses. A clinical report[J]. J Prosthodont, 2016,25(7):580-584.
doi: 10.1111/jopr.12325 pmid: 26216668 |
[57] |
Stawarczyk B, Eichberger M, Uhrenbacher J , et al. Three-unit reinforced polyetheretherketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types[J]. Dent Mater J, 2015,34(1):7-12.
doi: 10.4012/dmj.2013-345 pmid: 25311236 |
[58] |
Stawarczyk B, Ender A, Trottmann A , et al. Load-bearing capacity of CAD/CAM milled polymeric three-unit fixed dental prostheses: effect of aging regimens[J]. Clin Oral Investig, 2012,16(6):1669-1677.
doi: 10.1007/s00784-011-0670-4 pmid: 22209963 |
[59] |
Beuer F, Steff B, Naumann M , et al. Load-bearing capacity of all-ceramic three-unit fixed partial den-tures with different computer-aided design (CAD)/computer-aided manufacturing (CAM) fabricated framework materials[J]. Eur J Oral Sci, 2008,116(4):381-386.
doi: 10.1111/j.1600-0722.2008.00551.x pmid: 18705807 |
[60] |
Kolbeck C, Behr M, Rosentritt M , et al. Fracture force of tooth-tooth- and implant-tooth-supported all-ceramic fixed partial dentures using titanium vs. customised zirconia implant abutments[J]. Clin Oral Implants Res, 2008,19(10):1049-1053.
doi: 10.1111/j.1600-0501.2008.01551.x pmid: 18707604 |
[61] |
Stawarczyk B, Beuer F, Wimmer T , et al. Polye-theretherketone—a suitable material for fixed dental prostheses[J]. J Biomed Mater Res Part B Appl Bio-mater, 2013,101(7):1209-1216.
doi: 10.1002/jbm.b.32932 |
[62] |
Pfeiffer P, Grube L . Effect of pontic height on the fracture strength of reinforced interim fixed partial dentures[J]. Dent Mater, 2006,22(12):1093-1097.
doi: 10.1016/j.dental.2005.09.003 pmid: 16376983 |
[63] |
Kurtz SM, Devine JN . PEEK biomaterials in trauma, orthopedic, and spinal implants[J]. Biomaterials, 2007,28(32):4845-4869.
doi: 10.1016/j.biomaterials.2007.07.013 |
[64] |
Schmidlin PR, Stawarczyk B, Wieland M , et al. Effect of different surface pre-treatments and luting mate-rials on shear bond strength to PEEK[J]. Dent Mater, 2010,26(6):553-559.
doi: 10.1016/j.dental.2010.02.003 pmid: 20206986 |
[65] |
Hallmann L, Mehl A, Sereno N , et al. The improve-ment of adhesive properties of PEEK through dif-ferent pre-treatments[J]. Appl Surf Sci, 2012,258(18):7213-7218.
doi: 10.1016/j.apsusc.2012.04.040 |
[66] |
Stawarczyk B, Keul C, Beuer F , et al. Tensile bond strength of veneering resins to PEEK: impact of different adhesives[J]. Dent Mater J, 2013,32(3):441-448.
doi: 10.4012/dmj.2013-011 pmid: 23719006 |
[67] |
Stawarczyk B, Bähr N, Beuer F , et al. Influence of plasma pretreatment on shear bond strength of self-adhesive resin cements to polyetheretherketone[J]. Clin Oral Investig, 2014,18(1):163-170.
doi: 10.1007/s00784-013-0966-7 pmid: 23504226 |
[68] |
Keul C, Liebermann A, Schmidlin PR , et al. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites[J]. J Adhes Dent, 2014,16(4):383-392.
doi: 10.3290/j.jad.a32570 pmid: 25133270 |
[69] |
Attia A, Kern M . Effect of cleaning methods after reduced-pressure air abrasion on bonding to zirconia ceramic[J]. J Adhes Dent, 2011,13(6):561-567.
doi: 10.3290/j.jad.a19831 pmid: 21246066 |
[70] | Klosa K, Wolfart S, Lehmann F , et al. The effect of storage conditions, contamination modes and cleaning procedures on the resin bond strength to lithium disi-licate ceramic[J]. J Adhes Dent, 2009,11(2):127-135. |
[71] | Azimian F, Klosa K, Kern M . Evaluation of a new universal primer for ceramics and alloys[J]. J Adhes Dent, 2012,14(3):275-282. |
[72] |
Uhrenbacher J, Schmidlin PR, Keul C , et al. The effect of surface modification on the retention str-ength of polyetheretherketone crowns adhesively bonded to dentin abutments[J]. J Prosthet Dent, 2014,112(6):1489-1497.
doi: 10.1016/j.prosdent.2014.05.010 pmid: 24993380 |
[73] |
Rosentritt M, Preis V, Behr M , et al. Shear bond strength between veneering composite and PEEK after different surface modifications[J]. Clin Oral Investig, 2015,19(3):739-744.
doi: 10.1007/s00784-014-1294-2 pmid: 25096670 |
[74] |
Stawarczyk B, Thrun H, Eichberger M , et al. Effect of different surface pretreatments and adhesives on the load-bearing capacity of veneered 3-unit PEEK FDPs[J]. J Prosthet Dent, 2015,114(5):666-673.
doi: 10.1016/j.prosdent.2015.06.006 pmid: 26344191 |
[75] |
Andrikopoulou E, Zoidis P, Artopoulou II , et al. Mo-dified PEEK resin bonded fixed dental prosjournal for a young cleft lip and palate patient[J]. J Esthet Restor Dent, 2016,28(4):201-207.
doi: 10.1111/jerd.12221 |
[76] |
Hansson O . Clinical results with resin-bonded pros-theses and an adhesive cement[J]. Quintessence Int, 1994,25(2):125-132.
doi: 10.1159/000345371 pmid: 8183978 |
[77] |
Priest GF . Failure rates of restorations for single-tooth replacement[J]. Int J Prosthodont, 1996,9(1):38-45.
doi: 10.1111/j.1365-2591.1996.tb01357.x pmid: 8630176 |
[1] | 孙旭,邓振南,文才,赵颖. Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察[J]. 国际口腔医学杂志, 2023, 50(6): 669-673. |
[2] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[3] | 龚佳明,赵瑞敏,潘宏伟,郎鑫,余占海,李健学. 动态导航与静态导航对种植体准确性的Meta分析[J]. 国际口腔医学杂志, 2023, 50(5): 538-551. |
[4] | 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158. |
[5] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[6] | 曹正国. 修复治疗相关的牙周问题考量[J]. 国际口腔医学杂志, 2022, 49(1): 1-11. |
[7] | 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380-384. |
[8] | 路泊遥,杨大维,刘蔚晴,梁星. 超短种植体临床应用效果的影响因素[J]. 国际口腔医学杂志, 2021, 48(3): 329-328. |
[9] | 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340. |
[10] | 郑桂婷,徐燕,吴明月. 种植体周围疾病治疗的专家共识及治疗方法的进展[J]. 国际口腔医学杂志, 2020, 47(6): 725-731. |
[11] | 童子安,姒蜜思. 种植体表面菌斑去污方式的体外研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 589-594. |
[12] | 张婧婷,潘旭东,张文云. 遮色层厚度对聚醚醚酮-Crea.lign修复体颜色的影响[J]. 国际口腔医学杂志, 2020, 47(4): 418-423. |
[13] | 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444. |
[14] | 张敏,万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470. |
[15] | 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477. |
|