国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (2): 220-226.doi: 10.7518/gjkq.2022033
摘要:
人牙髓干细胞是再生医学中的主要细胞来源之一,具有多向分化潜能,已经被应用于治疗多种疾病,包括Ⅰ型糖尿病、神经系统疾病等。为满足临床需求,牙髓干细胞需进行体外扩增。常规的牙髓干细胞体外扩增方法需要运用添加胎牛血清的培养基,但近些年来由于胎牛血清存在伦理和安全两方面的问题,推荐使用无血清培养方法。本文对无血清培养基培养人牙髓干细胞的组成及方法,及其培育出的细胞的特性和其他相关应用进行综述。
中图分类号:
[1] |
Mooney DJ, Powell C, Piana J, et al. Engineering dental pulp-like tissue in vitro[J]. Biotechnol Prog, 1996, 12(6): 865-868.
doi: 10.1021/bp960073f |
[2] |
Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
doi: 10.1073/pnas.240309797 pmid: 11087820 |
[3] |
Potdar PD, Jethmalani YD. Human dental pulp stem cells: applications in future regenerative medicine[J]. World J Stem Cells, 2015, 7(5): 839-851.
doi: 10.4252/wjsc.v7.i5.839 |
[4] |
Beltrão-Braga PC, Pignatari GC, Maiorka PC, et al. Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells[J]. Cell Transplant, 2011, 20(11/12): 1707-1719.
doi: 10.3727/096368911X566235 |
[5] |
van der Valk J, Mellor D, Brands R, et al. The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture[J]. Toxicol In Vitro, 2004, 18(1): 1-12.
pmid: 14630056 |
[6] |
Thirumala S, Goebel WS, Woods EJ. Manufacturing and banking of mesenchymal stem cells[J]. Expert Opin Biol Ther, 2013, 13(5): 673-691.
doi: 10.1517/14712598.2013.763925 pmid: 23339745 |
[7] |
Gregory CA, Reyes E, Whitney MJ, et al. Enhanced engraftment of mesenchymal stem cells in a cutaneous wound model by culture in allogenic species-specific serum and administration in fibrin constructs[J]. Stem Cells, 2006, 24(10): 2232-2243.
pmid: 16763199 |
[8] |
Spees JL, Gregory CA, Singh H, et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy[J]. Mol Ther, 2004, 9(5): 747-756.
doi: 10.1016/j.ymthe.2004.02.012 |
[9] |
Murphy MB, Blashki D, Buchanan RM, et al. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation[J]. Biomaterials, 2012, 33(21): 5308-5316.
doi: 10.1016/j.biomaterials.2012.04.007 |
[10] |
Nakashima M, Iohara K, Murakami M, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study[J]. Stem Cell Res Ther, 2017, 8(1): 61.
doi: 10.1186/s13287-017-0506-5 pmid: 28279187 |
[11] |
Mochizuki M, Nakahara T. Establishment of xenogeneic serum-free culture methods for handling human dental pulp stem cells using clinically oriented in-vitro and in-vivo conditions[J]. Stem Cell Res Ther, 2018, 9(1): 25.
doi: 10.1186/s13287-017-0761-5 pmid: 29394956 |
[12] |
Coates DE, Alansary M, Friedlander L, et al. Dental pulp stem cells in serum-free medium for regenerative medicine[J]. J R Soc N Z, 2020, 50(1): 80-90.
doi: 10.1080/03036758.2019.1673447 |
[13] |
Hirata TM, Ishkitiev N, Yaegaki K, et al. Expression of multiple stem cell markers in dental pulp cells cultured in serum-free media[J]. J Endod, 2010, 36(7): 1139-1144.
doi: 10.1016/j.joen.2010.03.002 |
[14] |
Abdel Moniem EM, El-Batran MM, Halawa AM, et al. Optimizing a serum-free/xeno-free culture medium for culturing and promoting the proliferation of human dental pulp stem cells[J]. Stem Cell Investig, 2019, 6: 15.
doi: 10.21037/sci |
[15] |
Kawase-Koga Y, Fujii Y, Yamakawa D, et al. Identification of neurospheres generated from human dental pulp stem cells in xeno-/serum-free conditions[J]. Regen Ther, 2020, 14: 128-135.
doi: 10.1016/j.reth.2019.11.006 pmid: 32099873 |
[16] |
Machado N, Duailibi SE, Santos JA, et al. Effects of glucose and glutamine concentrations in human dental pulp stem cells viability. An approach for cell transplantation[J]. Acta Cir Bras, 2014, 29(10): 658-666.
doi: 10.1590/S0102-8650201400160006 |
[17] |
Bakopoulou A, Apatzidou D, Aggelidou E, et al. Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties[J]. Stem Cell Res Ther, 2017, 8(1): 247.
doi: 10.1186/s13287-017-0705-0 pmid: 29096714 |
[18] |
Xiao JY, Yang DW, Li QW, et al. The establishment of a chemically defined serum-free culture system for human dental pulp stem cells[J]. Stem Cell Res Ther, 2018, 9(1): 191.
doi: 10.1186/s13287-018-0928-8 |
[19] |
Qu CJ, Brohlin M, Kingham PJ, et al. Evaluation of growth, stemness, and angiogenic properties of dental pulp stem cells cultured in cGMP xeno-/serum-free medium[J]. Cell Tissue Res, 2020, 380(1): 93-105.
doi: 10.1007/s00441-019-03160-1 |
[20] | 钟萌, 赵奎君, 马致洁. 人牙髓干细胞的无血清培养及其生物学特性[J]. 中国生物制品学杂志, 2014, 27(12): 1615-1619. |
Zhong M, Zhao KJ, Ma ZJ. Serum-free culture and biological characters of human dental pulp stem cells[J]. Chin J Biologic, 2014, 27(12): 1615-1619. | |
[21] |
Karbanová J, Soukup T, Suchánek J, et al. Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium[J]. Cells Tissues Organs, 2011, 193(6): 344-365.
doi: 10.1159/000321160 pmid: 21071916 |
[22] | Fujii S, Fujimoto K, Goto N, et al. Characterization of human dental pulp cells grown in chemically defined serum-free medium[J]. Biomed Rep, 2018, 8(4): 350-358. |
[23] |
Shi ST, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp[J]. J Bone Miner Res, 2003, 18(4): 696-704.
doi: 10.1359/jbmr.2003.18.4.696 |
[24] |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
doi: 10.1080/14653240600855905 pmid: 16923606 |
[25] | 王莹, 徐燕, 庞罡, 等. 无血清培养下富血小板纤维蛋白提取液对牙髓干细胞增殖分化的影响[J]. 口腔医学研究, 2018, 34(7): 712-716. |
Wang Y, Xu Y, Pang G, et al. Effect of platelet-rich fibrin extract on proliferation and differentiation of dental pulp stem cells in serum-free culture[J]. J Oral Sci Res, 2018, 34(7): 712-716. | |
[26] |
Chase LG, Yang SF, Zachar V, et al. Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells[J]. Stem Cells Transl Med, 2012, 1(10): 750-758.
doi: 10.5966/sctm.2012-0072 |
[27] |
Bonnamain V, Thinard R, Sergent-Tanguy S, et al. Human dental pulp stem cells cultured in serum-free supplemented medium[J]. Front Physiol, 2013, 4: 357.
doi: 10.3389/fphys.2013.00357 pmid: 24376422 |
[28] |
De Francesco F, Tirino V, Desiderio V, et al. Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries[J]. PLoS One, 2009, 4(8): e6537.
doi: 10.1371/journal.pone.0006537 |
[29] |
Rafiee F, Pourteymourfard-Tabrizi Z, Mahmoudian-Sani MR, et al. Differentiation of dental pulp stem cells into neuron-like cells[J]. Int J Neurosci, 2020, 130(2): 107-116.
doi: 10.1080/00207454.2019.1664518 |
[30] |
Ibarretxe G, Crende O, Aurrekoetxea M, et al. Neural crest stem cells from dental tissues: a new hope for dental and neural regeneration[J]. Stem Cells Int, 2012, 2012: 103503.
doi: 10.1155/2012/103503 pmid: 23093977 |
[31] |
Xiao L, Tsutsui T. Characterization of human dental pulp cells-derived spheroids in serum-free medium: stem cells in the core[J]. J Cell Biochem, 2013, 114(11): 2624-2636.
doi: 10.1002/jcb.24610 pmid: 23794488 |
[32] | Jung J, Kim JW, Moon HJ, et al. Characterization of neurogenic potential of dental pulp stem cells cultured in xeno/serum-free condition: in vitro and in vivo assessment[J]. Stem Cells Int, 2016, 2016: 6921097. |
[33] |
Ishkitiev N, Yaegaki K, Imai T, et al. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium[J]. J Endod, 2012, 38(4): 475-480.
doi: 10.1016/j.joen.2011.12.011 pmid: 22414832 |
[34] |
Ishkitiev N, Yaegaki K, Kozhuharova A, et al. Pancreatic differentiation of human dental pulp CD117⁺ stem cells[J]. Regen Med, 2013, 8(5): 597-612.
doi: 10.2217/rme.13.42 pmid: 23998753 |
[35] |
Lee SY, Huang GW, Shiung JN, et al. Magnetic cryopreservation for dental pulp stem cells[J]. Cells Tissues Organs, 2012, 196(1): 23-33.
doi: 10.1159/000331247 |
[1] | 许琳,王如意,勾薪瑞,王晓莉,李宇. 甲状旁腺激素相关蛋白调控下颌髁突软骨的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 549-555. |
[2] | 马晓芳,黄永清,石冰,马坚. 双生子模型在唇腭裂病因学研究中的应用[J]. 国际口腔医学杂志, 2021, 48(5): 512-519. |
[3] | 周玉兰,石冰,贾仲林. 腭心面综合征临床特征和遗传学的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 506-511. |
[4] | 邓诗勇,宫苹,谭震. 脑和肌肉芳香烃受体核转运样蛋白1基因调控口腔及全身骨代谢的作用[J]. 国际口腔医学杂志, 2021, 48(2): 198-204. |
|