国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (2): 219-224.doi: 10.7518/gjkq.2020011

• 综述 • 上一篇    下一篇

形状记忆高分子材料在骨缺损修复再生领域的研究进展

刘育豪1,张陶2()   

  1. 1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院口腔颌面外科 成都 610041
    2. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院全科门诊 成都 610041
  • 收稿日期:2019-07-05 修回日期:2019-10-25 出版日期:2020-03-01 发布日期:2020-03-12
  • 通讯作者: 张陶
  • 作者简介:刘育豪,学士,Email: 2014181641015@stu.scu.edu.cn
  • 基金资助:
    国家自然科学基金(81800947);中国博士后科学基金(2018M640930);四川大学华西口腔医院青年科学研究基金(WCHS-201706)

Research progress on shape memory polymers in bone defect repair and regeneration

Liu Yuhao1,Zhang Tao2()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-07-05 Revised:2019-10-25 Online:2020-03-01 Published:2020-03-12
  • Contact: Tao Zhang
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81800947);China Postdoctoral Science Foundation(2018M640930);Youth Science Foundation of West China Hospital of Stomatology, Sichuan University(WCHS-201706)

摘要:

作为一种新颖的智能响应型生物材料,形状记忆高分子材料(SMP)已用于骨缺损修复研究。该类材料可在温度、水分等外界刺激下发生“初始态”与“临时态”之间的三维形状转变,可紧密充填骨缺损,改善了常规植入材料形状不匹配、植入难度大等缺点。此外,该类材料改性后可作为多孔性骨组织工程支架,用以装载各类生物活性因子及干细胞,促进缺损处新骨形成。SMP已在微创性、修复不规则骨缺损、促进骨缺损再生等方面展现出良好前景。本文对其目前在骨缺损修复中的原理、效应、性能优化等研究进展作一综述。

关键词: 形状记忆, 高分子材料, 骨缺损, 骨组织工程

Abstract:

As novel stimuli-responsive biomaterials, shape memory polymers (SMPs) have been used in bone defect repair. The 3D shape of these biomaterials can be switched between initial and temporary states under external stimuli, such as temperature changes and water contact, making them suitable for tightly filling bone defects and advantageous over traditional materials featuring shape mismatch and complicated implantation. In addition, modified SMPs can be used as porous bone tissue engineering scaffolds to load various bioactive factors and stem cells for new bone formation. Recently, SMPs have shown promising prospects in minimal invasiveness, repairing irregular bone defects, and promoting bone defect regeneration. This review will discuss the current progresses of SMPs in bone tissue engineering, including their mechanism, biological effects, and performance optimization.

Key words: shape memory effect, polymer material, bone defect, bone tissue engineering

中图分类号: 

  • R318.08

图 1

形状记忆效应图示 A:SMP由致密的植入性形态(例如棒状),向复杂骨缺损形态转化,亦可延展以实现体积的增大或长度/宽度的延长,体现微创优势;B:温敏型形状记忆效应的分子原理。"

[1] Dreifke MB, Ebraheim NA, Jayasuriya AC . Investi-gation of potential injectable polymeric biomaterials for bone regeneration[J]. J Biomed Mater Res A, 2013,101(8):2436-2447.
[2] Tang D, Tare RS, Yang LY , et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration[J]. Biomaterials, 2016,83:363-382.
[3] Zhang DW, George OJ, Petersen KM , et al. A bioactive ‘self-fitting’ shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects[J]. Acta Biomater, 2014,10(11):4597-4605.
[4] Fernandez-Yague MA, Abbah SA, McNamara L , et al. Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strate-gies[J]. Adv Drug Deliv Rev, 2015,84:1-29.
[5] 杨强, 彭江, 卢世璧 , 等. 骨髓基质干细胞与软骨脱细胞基质多孔支架异位构建组织工程化软骨的实验研究[J]. 中华骨科杂志, 2010,30(4):417-422.
Yang Q, Peng J, Lu SB , et al. Fabrication a novel cartilage ECM-derived 3-D porous acellular matrix scafold and in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells[J]. Chin J Orthop, 2010,30(4):417-422.
[6] 邱耿韬, 史占军, 赵亮 . 磷酸钙骨水泥在骨组织再生修复应用中的研究进展[J]. 中国矫形外科杂志, 2013,21(14):1406-1409.
Qiu GT, Shi ZJ, Zhao L . Research progress of calcium phosphate cement in bone tissue regeneration and repair[J]. Orthop J China, 2013,21(14):1406-1409.
[7] Sivashanmugam A, Arun Kumar R, Vishnu Priya M , et al. An overview of injectable polymeric hydrogels for tissue engineering[J]. Eur Polym J, 2015,72:543-565.
[8] Pina S, Oliveira JM, Reis RL . Natural-based nano-composites for bone tissue engineering and regene-rative medicine: a review[J]. Adv Mater Weinheim, 2015,27(7):1143-1169.
[9] Jahan K, Tabrizian M . Composite biopolymers for bone regeneration enhancement in bony defects[J]. Biomater Sci, 2016,4(1):25-39.
[10] 张文晶, 高长有 . 智能响应型聚合物微粒及其与细胞的相互作用[J]. 中国材料进展, 2012,31(5):19-30.
Zhang WJ, Gao CY . Intelligent-responsive polymeric particles and their interactions with cells[J]. Mater China, 2012,31(5):19-30.
[11] Kim DY, Kwon DY, Kwon JS , et al. Stimuli-respon-sive injectable in situ-forming hydrogels for rege-nerative medicines[J]. Polym Rev, 2015,55(3):407-452.
[12] Wu YB, Wang L, Zhao X , et al. Self-healing supra-molecular bioelastomers with shape memory pro-perty as a multifunctional platform for biomedical applications via modular assembly[J]. Biomaterials, 2016,104:18-31.
[13] Hasan SM, Nash LD, Maitland DJ . Porous shape memory polymers: design and applications[J]. J Polym Sci B Polym Phys, 2016,54(14):1300-1318.
[14] Chan BQ, Low ZW, Heng SJ , et al. Recent advances in shape memory soft materials for biomedical ap-plications[J]. ACS Appl Mater Interfaces, 2016,8(16):10070-10087.
[15] Hardy JG, Palma M, Wind SJ , et al. Responsive bio-materials: advances in materials based on shape-memory polymers[J]. Adv Mater Weinheim, 2016,28(27):5717-5724.
[16] Kai D, Prabhakaran MP, Chan BQ , et al. Elastic poly(ε-caprolactone)-polydimethylsiloxane copo-lymer fibers with shape memory effect for bone tissue engineering[J]. Biomed Mater, 2016,11(1):015007.
[17] Rychter P, Pamula E, Orchel A , et al. Scaffolds with shape memory behavior for the treatment of large bone defects[J]. J Biomed Mater Res A, 2015,103(11):3503-3515.
[18] Xie MH, Wang L, Ge J , et al. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering[J]. ACS Appl Mater Interfaces, 2015,7(12):6772-6781.
[19] Bao M, Wang XL, Yuan HH , et al. HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing[J]. J Mater Chem B, 2016,4(31):5308-5320.
[20] Bao M, Lou XX, Zhou QH , et al. Electrospun bio-mimetic fibrous scaffold from shape memory poly-mer of PDLLA-co-TMC for bone tissue engineering[J]. ACS Appl Mater Interfaces, 2014,6(4):2611-2621.
[21] Liu X, Zhao K, Gong T , et al. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect[J]. Biomacromo-lecules, 2014,15(3):1019-1030.
[22] Correia CO, Leite ÁJ, Mano JF . Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties[J]. Carbohydr Polym, 2015,123:39-45.
[23] Baker RM, Tseng LF, Iannolo MT , et al. Self-deplo-ying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: a mouse fe-moral segmental defect study[J]. Biomaterials, 2016,76:388-398.
[24] Xie RQ, Hu JL, Hoffmann O , et al. Self-fitting shape memory polymer foam inducing bone regeneration: a rabbit femoral defect study[J]. Biochim Biophys Acta Gen Subj, 2018,1862(4):936-945.
[25] Neffe AT, Hanh BD, Steuer S , et al. Polymer networks combining controlled drug release, biodegradation, and shape memory capability[J]. Adv Mater, 2009,21(32/33):3394-3398.
[26] Lee EM, Smith K, Gall K , et al. Change in surface roughness by dynamic shape-memory acrylate net-works enhances osteoblast differentiation[J]. Bioma-terials, 2016,110:34-44.
[27] Erndt-Marino JD, Munoz-Pinto DJ, Samavedi S , et al. Evaluation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams[J]. ACS Biomater Sci Eng, 2015,1(12):1220-1230.
[28] Tseng LF, Wang J, Baker RM , et al. Osteogenic ca-pacity of human adipose-derived stem cells is preser-ved following triggering of shape memory scaf-folds[J]. Tissue Eng Part A, 2016,22(15/16):1026-1035.
[29] Hendrikson WJ, Rouwkema J, Clementi F , et al. Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells[J]. Biofa-brication, 2017,9(3):031001.
[30] Wei Z, Yang JH, Zhou JX , et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chem Soc Rev, 2014,43(23):8114-8131.
[31] Yang B, Zhang YL, Zhang XY , et al. Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier[J]. Polym Chem, 2012,3(12):3235-3238.
[32] Wang J, Brasch ME, Baker RM , et al. Shape memory activation can affect cell seeding of shape memory polymer scaffolds designed for tissue engineering and regenerative medicine[J]. J Mater Sci Mater Med, 2017,28(10):151.
[33] Ni PY, Ding QX, Fan M , et al. Injectable thermo-sensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects[J]. Biomaterials, 2014,35(1):236-248.
[34] Xiao H, Lu W, Le XX , et al. A multi-responsive hy-drogel with a triple shape memory effect based on reversible switches[J]. Chem Commun (Camb), 2016,52(90):13292-13295.
[35] Behl M, Razzaq MY, Lendlein A . Multifunctional shape-memory polymers[J]. Adv Mater, 2010,22(31):3388-3410.
[36] Jung YC, Cho JW . Application of shape memory polyurethane in orthodontic[J]. J Mater Sci Mater Med, 2010,21(10):2881-2886.
[1] 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746.
[2] 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358.
[3] 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203.
[4] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[5] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
[6] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[7] 赵鹏飞,王琪. 伴糖尿病患者种植骨缺损的病因及治疗的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 244-248.
[8] 易芳,王斯任,褚衍昊,卢燕勤. 骨组织工程支架材料修复牙槽嵴裂的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 603-610.
[9] 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285.
[10] 梁馨予, 石佳博, 陈文川, 朱智敏. 硅酸镁锂在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 340-345.
[11] 张艺馨, 李磊. 磷酸钙支架-药物缓释体系在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 346-350.
[12] 汪洋, 申玉芹, 于文雯, 孙新华. 改良介孔生物活性玻璃在颌面部骨缺损修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 32-35.
[13] 张佳, 柳忠豪. 锶在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 50-54.
[14] 郑健茂 毛学理 凌均棨. 镁基支架及其在动物骨缺损修复中的应用[J]. 国际口腔医学杂志, 2015, 42(6): 720-723.
[15] 杨立明 陈淑萍 李小菊 谢春 武斌. Bio-oss应用于种植牙唇侧骨缺损的锥形束CT研究[J]. 国际口腔医学杂志, 2015, 42(4): 420-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .