国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 272-282.doi: 10.7518/gjkq.2022024

• 干细胞和再生医学专栏 • 上一篇    下一篇

牙髓再生中血管网络重建策略

覃思文(),廖立()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医学院 成都 610041
  • 收稿日期:2021-08-05 修回日期:2021-12-02 出版日期:2022-05-01 发布日期:2022-05-09
  • 通讯作者: 廖立
  • 作者简介:覃思文,学士,Email:Sven_Qin@outlook.com
  • 基金资助:
    国家自然科学基金面上项目(82071092);四川省重点研发项目(2019YFS0311)

Strategies of vascularization in dental pulp regeneration

Qin Siwen(),Liao Li.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-08-05 Revised:2021-12-02 Online:2022-05-01 Published:2022-05-09
  • Contact: Li. Liao
  • Supported by:
    National Nature Science Foundation of China(82071092);Key Research and Development Projects in Sichuan Province(2019YFS0311)

摘要:

牙髓炎是常见的口腔疾病之一,目前常采取的治疗手段难以恢复牙髓的结构和功能,通过再生医学原理探索牙髓再生的策略成为目前的研究热点。根管和牙髓腔的形态具有特殊性,牙髓组织再生的难点在于牙髓血管网络的重建。牙髓血管形成策略研究目前主要集中于两个方向:原位血管生成策略和移植物预血管化技术。本文系统分析了基于牙髓干细胞的牙髓再生中血管再生的研究成果,重点讨论了体内原位血管生成的基本原理和促进血管再生过程中的信号分子、理化因素以及细胞外囊泡的调控作用;对预血管化系统所采用的细胞来源、血管网络构建条件、凝胶支架选择与微环境的配置进行了总结和讨论;同时对目前相关预血管化技术的临床研究情况进行了归纳,并对预血管化技术在牙髓再生中血管网络重建中的可行性和应用前景进行了探讨和展望。

关键词: 牙髓再生, 干细胞, 血管生成, 血管形成, 预血管化

Abstract:

Pulpitis has one of the highest incidences of oral diseases, and restoring the structure and function of dental pulp is difficult by the commonly adopted treatment methods. Therefore, the strategy of dental pulp regeneration through regenerative medicine has been widely explored. However, the reconstruction of a pulp vascular network is a difficult problem in pulp tissue regeneration because of the special morphological characteristics of root canal and pulp cavity. Studies on pulp angiogenesis strategies have mainly focused on two aspects: orthotopic angiogenesis strategies and graft pre-angiogenesis techniques. In this work, the basic principles of orthotopic angiogenesis in vivo were mainly discussed by systematically analyzing the results of research on angiogenesis in dental pulp regeneration based on dental pulp stem cells (DPSCs): 1) signaling molecules, physical and chemical factors, and regulation of extracellular vesicles during angiogenesis and 2) cell source, vascular network construction conditions, gel scaffold selection, and microenvironment configuration of the pre-angiogenesis system. Studies and trials on the strategies of the vascularization of dental pulp in clinics were also summarized. The application prospect of pre-angiogenesis in the reconstruction of a vascular network in pulp regeneration was also discussed and prospected.

Key words: pulp regeneration, stem cells, angiogenesis, vascularization, pre-vascularization

中图分类号: 

  • R 783

表 1

DPSCs不同分化方向所需信号因子"

分化方向信号因子
成骨细胞水溶性17β雌激素、骨形态发生蛋白2
神经元细胞FGF-b、EGF、神经营养素3、BDNF、孕激素
血管内皮细胞FGF-b、VEGF、IGF-Ⅰ
1 Kim SG, Malek M, Sigurdsson A, et al. Regenerative endodontics: a comprehensive review[J]. Int Endod J, 2018, 51(12): 1367-1388.
2 Mason C, Dunnill P. A brief definition of regenerative medicine[J]. Regen Med, 2008, 3(1): 1-5.
3 Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics[J]. J Endod, 2005, 31(10): 711-718.
4 Nakashima M, Iohara K, Sugiyama M. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration[J]. Cytokine Growth Factor Rev, 2009, 20(5/6): 435-440.
5 Nakashima M, Iohara K. Regeneration of dental pulp by stem cells[J]. Adv Dent Res, 2011, 23(3): 313-319.
6 Clark ER, Clark EL. Microscopic observations on the growth of blood capillaries in the living mammal[J]. Am J Anat, 1939, 64(2): 251-301.
7 Caviedes-Bucheli J, Gomez-Sosa JF, Azuero-Holguin MM, et al. Angiogenic mechanisms of human dental pulp and their relationship with substance P expression in response to occlusal trauma[J]. Int Endod J, 2017, 50(4): 339-351.
8 Betz C, Lenard A, Belting HG, et al. Cell behaviors and dynamics during angiogenesis[J]. Development, 2016, 143(13): 2249-2260.
9 Yoon C, Choi C, Stapleton S, et al. Myosin Ⅱ A-mediated forces regulate multicellular integrity during vascular sprouting[J]. Mol Biol Cell, 2019, 30(16): 1974-1984.
10 Sigurbjörnsdóttir S, Mathew R, Leptin M. Molecular mechanisms of de novo lumen formation[J]. Nat Rev Mol Cell Biol, 2014, 15(10): 665-676.
11 Alhayaza R, Haque E, Karbasiafshar C, et al. The Relationship between reactive oxygen species and endothelial cell metabolism[J]. Front Chem, 2020, 8: 592688.
12 Liu F, Huang X, Luo Z, et al. Hypoxia-activated PI3K/Akt inhibits oxidative stress via the regulation of reactive oxygen species in human dental pulp cells[J]. Oxid Med Cell Longev, 2019, 2019: 6595189.
13 Maulik N, Das DK. Redox signaling in vascular angiogenesis[J]. Free Radic Biol Med, 2002, 33(8): 1047-1060.
14 Zhou J, Sun C. SENP1/HIF-1α axis works in angiogenesis of human dental pulp stem cells[J]. J Biochem Mol Toxicol, 2020, 34(3): e22436.
15 Gnanasegaran N, Govindasamy V, Musa S, et al. Innate molecular signature of stem cells from carious teeth influences differentiation toward endodermal endpoint[J]. J Immunol Regen Med, 2018, 1: 21-31.
16 Renard E, Gaudin A, Bienvenu G, et al. Immune cells and molecular networks in experimentally induced pulpitis[J]. J Dent Res, 2016, 95(2): 196-205.
17 Brodzikowska A, Gondek A, Rak B, et al. Metalloproteinase 14 (MMP-14) and hsa-miR-410-3p expression in human inflamed dental pulp and odontoblasts[J]. Histochem Cell Biol, 2019, 152(5): 345-353.
18 Bindal P, Gnanasegaran N, Bindal U, et al. Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment[J]. Clin Oral Invest, 2019, 23(10): 3821-3831.
19 Sanada F, Fujikawa T, Shibata K, et al. Therapeutic angiogenesis using HGF plasmid[J]. Ann Vasc Dis, 2020, 13(2): 109-115.
20 Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, et al. Contribution of angiogenesis to inflammation and cancer[J]. Front Oncol, 2019, 9: 1399.
21 Gong T, Xu J, Heng B, et al. EphrinB2/EphB4 signaling regulates DPSCs to induce sprouting angiogenesis of endothelial cells[J]. J Dent Res, 2019, 98(7): 803-812.
22 Zou T, Jiang S, Dissanayaka WL, et al. Sema4D/PlexinB1 promotes endothelial differentiation of dental pulp stem cells via activation of AKT and ERK1/2 signaling[J]. J Cell Biochem, 2019, 120(8): 13614-13624.
23 Palosaari H, Pennington CJ, Larmas M, et al. Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue[J]. Eur J Oral Sci, 2003, 111(2): 117-127.
24 Senger DR, Davis GE. Angiogenesis[J]. Cold Spring Harb Perspect Biol, 2011, 3(8): a005090.
25 Presta M, Dell’ Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis[J]. Cytokine Growth Factor Rev, 2005, 16(2): 159-178.
26 Vidovic-Zdrilic I, Vining KH, Vijaykumar A, et al. FGF2 enhances odontoblast differentiation by αSM-A+ progenitors in vivo[J]. J Dent Res, 2018, 97(10): 1170-1177.
27 Shen S, Shang L, Liu H, et al. AGGF1 inhibits the expression of inflammatory mediators and promotes angiogenesis in dental pulp cells[J]. Clin Oral Investig, 2021, 25(2): 581-592.
28 Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease[J]. Biochem Pharmacol, 2008, 75(2): 346-359.
29 Takeuchi O, Komasa R, Hosoyama Y, et al. Wnt signal pathway regulates MMP-1 and MMP-3 production in human dental pulp fibroblast like cells[J]. J Oral Tiss Eng, 2018, 16(2): 47-56.
30 Hu J, Ni S, Cao Y, et al. The angiogenic effect of microRNA-21 targeting TIMP3 through the regulation of MMP2 and MMP9[J]. PLoS One, 2016, 11(2): e0149537.
31 Nara K, Kawashima N, Noda S, et al. Anti-inflammatory roles of microRNA 21 in lipopolysaccharide-stimulated human dental pulp cells[J]. J Cell Physiol, 2019, 234(11): 21331-21341.
32 Shi YH, Shi H, Nomi A, et al. Mesenchymal stem cell-derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration[J]. Cytotherapy, 2019, 21(5): 497-508.
33 Zhou H, Li X, Yin Y, et al. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth[J]. Stem Cell Res Ther, 2020, 11(1): 110.
34 Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways[J]. Stem Cell Res Ther, 2019, 10(1): 47.
35 Lucero R, Zappulli V, Sammarco A, et al. Glioma-derived miRNA-containing extracellular vesicles induce angiogenesis by reprogramming brain endothelial cells[J]. Cell Rep, 2020, 30(7): 2065-2074.e4.
36 Wang N, Chen CY, Yang DZ, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(8): 2085-2092.
37 Lv L, Sheng CH, Zhou YS. Extracellular vesicles as a novel therapeutic tool for cell-free regenerative medicine in oral rehabilitation[J]. J Oral Rehabilitation, 2019, 47: 29-54.
38 Wang CG, Li Y, Yang M, et al. Efficient differentiation of bone marrow mesenchymal stem cells into endothelial cells in vitro[J]. Eur J Vasc Endovascular Surg, 2018, 55(2): 257-265.
39 Jehn P, Winterboer J, Kampmann A, et al. Angiogenic effects of mesenchymal stem cells in combination with different scaffold materials[J]. Microvasc Res, 2020, 127: 103925.
40 Liu CB, Huang H, Sun P, et al. Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia[J]. Stem Cells Transl Med, 2016, 5(8): 1004-1013.
41 Arutyunyan I, Fatkhudinov T, Kananykhina E, et al. Role of VEGF-A in angiogenesis promoted by umbilical cord-derived mesenchymal stromal/stem cells: in vitro study[J]. Stem Cell Res Ther, 2016, 7: 46.
42 Chen WC, Liu X, Chen QM, et al. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs[J]. J Tissue Eng Regen Med, 2018, 12(1): 191-203.
43 Zhang S, Zhang WW, Li YP, et al. Cotransplantation of human umbilical cord mesenchymal stem cells and endothelial cells for angiogenesis and pulp regeneration in vivo[J]. Life Sci, 2020, 255: 117763.
44 Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)[J]. Cytotherapy, 2013, 15(6): 641-648.
45 Bender R, McCarthy M, Brown T, et al. Human adipose derived cells in two- and three-dimensional cultures: functional validation of an in vitro fat construct[J]. Stem Cells Int, 2020, 2020: 1-14.
46 Volz AC, Huber B, Schwandt AM, et al. EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells[J]. Differentiation, 2017, 95: 21-30.
47 Arderiu G, Cuevas I, Chen A, et al. HoxA5 stabilizes adherens junctions via increased Akt1[J]. Cell Adhesion Migr, 2007, 1(4): 185-195.
48 Bi H, Li H, Zhang C, et al. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process[J]. Stem Cell Res Ther, 2019, 10(1): 302.
49 Jin Q, Yuan K, Lin W, et al. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1577-1584.
50 Mathew SA, Naik C, Cahill PA, et al. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis[J]. Cell Mol Life Sci, 2020, 77(2): 253-265.
51 Liang L, Li Z, Ma T, et al. Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats[J]. Cell Transplant, 2017, 26(1): 45-61.
52 Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis[J]. Stem Cell Res Ther, 2017, 8(1): 219.
53 He YF, Xia J, Chen H, et al. Human adipose liquid extract induces angiogenesis and adipogenesis: a novel cell-free therapeutic agent[J]. Stem Cell Res Ther, 2019, 10: 252.
54 Yu Z, Cai Y, Deng M, et al. Fat extract promotes angiogenesis in a murine model of limb ischemia: a novel cell-free therapeutic strategy[J]. Stem Cell Res Ther, 2018, 9(1): 294.
55 Ahangar P, Mills SJ, Cowin AJ. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair[J]. Int J Mol Sci, 2020, 21(19): 7038.
56 Al-Hendy A, Chicago UOIA. Towards cell free therapy of premature ovarian insufficiency: human bone marrow mesenchymal stem cells secretome enhances angiogenesis in human ovarian microvascular endothelial cells[J]. J Stem Cells Res Dev Ther, 2019, 5(2): 1-8.
57 Kato M, Tsunekawa S, Nakamura N, et al. Secreted factors from stem cells of human exfoliated deciduous teeth directly activate endothelial cells to promote all processes of angiogenesis[J]. Cells, 2020, 9(11): 2385.
58 Seo Y, Shin TH, Kim HS. Current strategies to enhance adipose stem cell function: an update[J]. Int J Mol Sci, 2019, 20(15): 3827.
59 Chance TC, Herzig MC, Christy BA, et al. Human mesenchymal stromal cell source and culture conditions influence extracellular vesicle angiogenic and metabolic effects on human endothelial cells in vitro[J]. J Trauma Acute Care Surg, 2020, 89(Suppl 2): S100-S108.
60 Zhou YJ, Liu SY, Zhao M, et al. Injectable extracellular vesicle-released self-assembling peptide nanofiber hydrogel as an enhanced cell-free therapy for tissue regeneration[J]. J Control Release, 2019, 316: 93-104.
61 Zhang SY, Thiebes AL, Kreimendahl F, et al. Extracellular vesicles-loaded fibrin gel supports rapid neovascularization for dental pulp regeneration[J]. Int J Mol Sci, 2020, 21(12): 4226.
62 Seang S, Pavasant P, Limjeerajarus CN. Iloprost induces dental pulp angiogenesis in a growth factorfree 3-dimensional organ culture system[J]. J Endod, 2018, 44(5): 759-764.e2.
63 Ibrahim AH, Li H, Al-Rawi SS, et al. Angiogenic and wound healing potency of fermented virgin coconut oil: in vitro and in vivo studies[J]. Am J Transl Res, 2017, 9(11): 4936-4944.
64 Yu M, Liu W, Li J, et al. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway[J]. Stem Cell Res Ther, 2020, 11(1): 350.
65 Bakhtiar H, Pezeshki-Modaress M, Kiaipour Z, et al. Pulp ECM-derived macroporous scaffolds for stimulation of dental-pulp regeneration process[J]. Dent Mater, 2020, 36(1): 76-87.
66 Moonesi Rad R, Atila D, Akgün EE, et al. Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regenerative endodontics[J]. Mater Sci Eng C Mater Biol Appl, 2019, 100: 928-948.
67 Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine[J]. Biotechnol Lett, 2010, 32(6): 733-742.
68 Paduano F, Marrelli M, White LJ, et al. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type Ⅰ[J]. PLoS One, 2016, 11(2): e0148225.
69 Jiang YC, Wang XF, Xu YY, et al. Polycaprolactone nanofibers containing vascular endothelial growth factor-encapsulated gelatin particles enhance mesenchymal stem cell differentiation and angiogenesis of endothelial cells[J]. Biomacromolecules, 2018, 19(9): 3747-3753.
70 Ardeshirylajimi A, Golchin A, Vargas J, et al. Application of stem cell encapsulated hydrogel in dentistry[M]//Tayebi L.Applications of biomedical engineering in dentistry. Cham: Springer International Publishing, 2019: 289-300.
71 Samourides A, Browning L, Hearnden V, et al. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110384.
72 Qazi TH, Tytgat L, Dubruel P, et al. Extrusion printed scaffolds with varying pore size as modulators of MSC angiogenic paracrine effects[J]. ACS Biomater Sci Eng, 2019, 5(10): 5348-5358.
73 Dehli F, Rebers L, Stubenrauch C, et al. Highly ordered gelatin methacryloyl hydrogel foams with tunable pore size[J]. Biomacromolecules, 2019, 20(7): 2666-2674.
74 Alraies A, Waddington RJ, Sloan AJ, et al. Evaluation of dental pulp stem cell heterogeneity and behaviour in 3D type I collagen gels[J]. Biomed Res Int, 2020, 2020: 3034727.
75 Yu HY, Zhang XY, Song WJ, et al. Effects of 3-dimensional bioprinting alginate/gelatin hydrogel scaffold extract on proliferation and differentiation of human dental pulp stem cells[J]. J Endod, 2019, 45(6): 706-715.
76 Jessop ZM, Al-Sabah A, Gao N, et al. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting[J]. Biofabrication, 2019, 11(4): 045006.
77 Bhuptani RS, Patravale VB. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells[J]. Int J Pharm, 2016, 515(1/2): 555-564.
78 Campodoni E, Dozio SM, Panseri S, et al. Mimicking natural microenvironments: design of 3D-aligned hybrid scaffold for dentin regeneration[J]. Front Bioeng Biotechnol, 2020, 8: 836.
79 Karimi F, O’Connor AJ, Qiao GG, et al. Integrin clustering matters: a review of biomaterials functionalized with multivalent integrin-binding ligands to improve cell adhesion, migration, differentiation, angiogenesis, and biomedical device integration[J]. Adv Healthc Mater, 2018, 7(12): 1701324.
80 Sanaei-Rad P, Jamshidi D, Adel M, et al. Electrospun poly(l-lactide) nanofibers coated with mineral trioxide aggregate enhance odontogenic differentiation of dental pulp stem cells[J]. Polym Adv Technol, 2021, 32(1): 402-410.
81 Seonwoo H, Jang KJ, Lee D, et al. Neurogenic differentiation of human dental pulp stem cells on graphene-polycaprolactone hybrid nanofibers[J]. Nanomaterials (Basel), 2018, 8(7): 554.
82 Ferro F, Spelat R, Baheney CS. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation[M]//Kioussi C. Stem cells and tissue repair. New York: Springer New York, 2014: 91-115.
83 Duncan HF, Kobayashi Y, Shimizu E. Growth factors and cell homing in dental tissue regeneration[J]. Curr Oral Health Rep, 2018, 5(4): 276-285.
84 Huang CC, Narayanan R, Warshawsky N, et al. Dual ECM biomimetic scaffolds for dental pulp regenerative applications[J]. Front Physiol, 2018, 9: 495.
85 Hu L, Gao Z, Xu J, et al. Decellularized swine dental pulp as a bioscaffold for pulp regeneration[J]. Biomed Res Int, 2017, 2017: 9342714.
86 Lin CY, Tsai MS, Kuo PJ, et al. 2, 3, 5, 4'-Tetrahydroxystilbene-2-O-β-d-glucoside promotes the effects of dental pulp stem cells on rebuilding periodontal tissues in experimental periodontal defects[J]. J Periodontol, 2021, 92(2): 306-316.
87 Athirasala A, Lins F, Tahayeri A, et al. A novel strategy to engineer pre-vascularized full-length dental pu-lplike tissue constructs[J]. Sci Rep, 2017, 7(1): 3323.
88 Gotjamanos T. Cellular organization in the subodontoblastic zone of the dental pulp: Ⅰ. A study of cell-free and cell-rich layers in pulps of adult rat and deciduous monkey teeth[J]. Arch Oral Biol, 1969, 14(9): 1007-IN3.
[1] 王素杰,谭芹,韦渊,王洁,范杰,岳二丽. 口腔扁平苔藓患者血清血管生成素-2水平与叉头翼状螺旋转录因子阳性调节性T细胞及疾病活动度的相关性分析[J]. 国际口腔医学杂志, 2023, 50(6): 674-678.
[2] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[3] 于乐蓉,李祥伟,艾虹. 牙髓干细胞干性维持的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 463-471.
[4] 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42.
[5] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[6] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[7] 蔡韵竹,朱姝,刘尧,陈旭. 牙源性干细胞用于治疗神经系统疾病的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 255-262.
[8] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[9] 付恒怡,汪成林. 人牙髓干细胞无血清培养方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 220-226.
[10] 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26.
[11] 熊梦琳,吴龙,马丽,赵今. 转化生长因子-β2促进牙髓干细胞增殖和分化的作用研究[J]. 国际口腔医学杂志, 2021, 48(6): 635-639.
[12] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[13] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[14] 巩靖蕾,黄艳梅,王军. 多相支架在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 563-569.
[15] 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .