国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (6): 675-679.doi: 10.7518/gjkq.2019097
Zhou Tingru1,2,Li Yongsheng2()
摘要:
牙髓干细胞具有高度增殖及多谱系分化的潜能,使其在联合生物支架材料修复口腔颌面部骨组织缺损方面具有独特的优势和前景,是骨组织工程学中关键的优选细胞。为了更好地实现骨组织的再生,需要为牙髓干细胞的成骨分化提供一个适宜的微环境。本文对牙髓干细胞成骨分化微环境中的细胞因子、支架材料及药物的研究进展进行综述。
中图分类号:
[1] | Ward BB, Brown SE, Krebsbach PH . Bioengineering strategies for regeneration of craniofacial bone: a review of emerging technologies[J]. Oral Dis, 2010,16(8):709-716. |
[2] | Yang M, Zhang H, Gangolli R . Advances of mesen-chymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering[J]. Curr Stem Cell Res Ther, 2014,9(3):150-161. |
[3] | Hossein-Khannazer N, Hashemi SM, Namaki S , et al. Study of the immunomodulatory effects of osteogenic differentiated human dental pulp stem cells[J]. Life Sci, 2019,216:111-118. |
[4] | Gronthos S, Mankani M, Brahim J , et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2000,97(25):13625-13630. |
[5] | Bousnaki M, Bakopoulou A, Papadogianni D , et al. Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards tem-poromandibular joint disc regeneration[J]. J Mater Sci Mater Med, 2018,29(7):97. |
[6] | Han YJ, Kang YH, Shivakumar SB , et al. Stem cells from cryopreserved human dental pulp tissues se-quentially differentiate into definitive endoderm and hepatocyte-like cells in vitro[J]. Int J Med Sci, 2017,14(13):1418-1429. |
[7] | Suchanek J, Nasry SA, Soukup T . The differentiation potential of human natal dental pulp stem cells into insulin-producing cells[J]. Folia Biol (Praha), 2017,63(4):132-138. |
[8] | 袁梦桐, 胡伟平, 周海燕 , 等. 体外克隆化传代培养人年轻恒牙牙髓干细胞的研究[J]. 口腔医学研究, 2010,26(5):624-627. |
Yuan MT, Hu WP, Zhou HY , et al. Observation of dental pulp stem cells from human young permanent teeth of cloning subculture in vitro[J]. J Oral Sci Res, 2010,26(5):624-627. | |
[9] | Lu X, Liu SF, Wang HH , et al. A biological study of supernumerary teeth derived dental pulp stem cells based on RNA-seq analysis[J]. Int Endod J, 2019,52(6):819-828. |
[10] | Tang R, Ding G . Swine dental pulp stem cells inhibit T-cell proliferation[J]. Transplant Proc, 2011,43(10):3955-3959. |
[11] | Kasagi S, Chen W . TGF-beta1 on osteoimmunology and the bone component cells[J]. Cell Biosci, 2013,3(1):4. |
[12] | Yoon SJ, Yoo Y, Nam SE , et al. The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model[J]. Mar Drugs, 2018,16(10). doi: 10.3390/md16100351. |
[13] | 杨毅 . TGF-β2对兔骨髓间充质干细胞体外成骨分化干预的实验研究[D]. 昆明: 昆明医科大学, 2014. |
Yang Y . Intervention of TGF-β2 on osteogenic dif-ferentiation of rabbit bone marrow mesenchymal stem cells in vitro[D]. Kunming: Kunming Medical University, 2014. | |
[14] | Huojia M, Muraoka N, Yoshizaki K , et al. TGF-β3 induces ectopic mineralization in fetal mouse dental pulp during tooth germ development[J]. Dev Growth Differ, 2005,47(3):141-152. |
[15] | Yi L, Li Z, Jiang H , et al. Gene modification of transforming growth factor β (TGF-β) and interleukin 10 (IL-10) in suppressing Mt sonicate induced os-teoclast formation and bone absorption[J]. Med Sci Monit, 2018,24:5200-5207. |
[16] | Aksel H, Huang GT . Combined effects of vascular endothelial growth factor and bone morphogenetic protein 2 on odonto/osteogenic differentiation of human dental pulp stem cells in vitro[J]. J Endod, 2017,43(6):930-935. |
[17] | Taşlı PN, Aydın S, Yalvaç ME , et al. Bmp 2 and Bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells[J]. Appl Biochem Biotechnol, 2014,172(6):3016-3025. |
[18] | Huang H, Dou L, Song J , et al. CBFA2T2 is required for BMP-2-induced osteogenic differentiation of mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2018,496(4):1095-1101. |
[19] | Tsukamoto J, Naruse K, Nagai Y , et al. Efficacy of a self-assembling peptide hydrogel, SPG-178-Gel, for bone regeneration and three-dimensional osteogenic induction of dental pulp stem cells[J]. Tissue Eng Part A, 2017,23(23/24):1394-1402. |
[20] | Lamplot JD, Qin J, Nan G , et al. BMP9 signaling in stem cell differentiation and osteogenesis[J]. Am J Stem Cells, 2013,2(1):1-21. |
[21] | Lee JS, Lee JM, Im GI . Electroporation-mediated transfer of Runx2 and Osterix genes to enhance os-teogenesis of adipose stem cells[J]. Biomaterials, 2011,32(3):760-768. |
[22] | Feng G, Zhang J, Feng X , et al. Runx2 modified dental pulp stem cells (DPSCs) enhance new bone formation during rapid distraction osteogenesis (DO)[J]. Differentiation, 2016,92(4):195-203. |
[23] | Zhan FL, Liu XY, Wang XB . The role of microRNA-143-5p in the differentiation of dental pulp stem cells into odontoblasts by targeting Runx2 via the OPG/RANKL signaling pathway[J]. J Cell Biochem, 2018,119(1):536-546. |
[24] | Geoffroy V, Kneissel M, Fournier B , et al. High bone resorption in adult aging transgenic mice overexpre-ssing cbfa1/runx2 in cells of the osteoblastic lineage[J]. Mol Cell Biol, 2002,22(17):6222-6233. |
[25] | Liu W, Toyosawa S, Furuichi T , et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures[J]. J Cell Biol, 2001,155(1):157-166. |
[26] | Goto N, Fujimoto K, Fujii S , et al. Role of MSX1 in osteogenic differentiation of human dental pulp stem cells[J]. Stem Cells Int, 2016,2016:8035759. |
[27] | Xin T, Zhang T, Li Q , et al. A novel mutation of MSX1 in oligodontia inhibits odontogenesis of dental pulp stem cells via the ERK pathway[J]. Stem Cell Res Ther, 2018,9(1):221. |
[28] | Riccio M, Resca E, Maraldi T , et al. Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures[J]. Eur J Histochem, 2010,54(4):e46. |
[29] | Kanafi MM, Ramesh A, Gupta PK , et al. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering[J]. Int Endod J, 2014,47(7):687-697. |
[30] | Xia Y, Chen H, Zhang F , et al. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells[J]. Artif Cells Nanomed Biotechnol, 2018,46(Sup1):423-433. |
[31] | Guo T, Li Y, Cao G , et al. Fluorapatite-modified scaffold on dental pulp stem cell mineralization[J]. J Dent Res, 2014,93(12):1290-1295. |
[32] | 于玲, 刘阳, 张媛媛 , 等. 体外观察三种支架材料对人乳牙牙髓干细胞生物学行为的影响[J]. 实用口腔医学杂志, 2016,32(2):235-238. |
Yu L, Liu Y, Zhang YY , et al. Influence of three ty-pes of scaffolds on biological behavior of stem cells from human exfoliated deciduous teeth[J]. J Pract Stomatol, 2016,32(2):235-238. | |
[33] | Yuan M, Zhan Y, Hu W , et al. Aspirin promotes osteogenic differentiation of human dental pulp stem cells[J]. Int J Mol Med, 2018,42(4):1967-1976. |
[34] | Ruan F, Zheng Q, Wang J . Mechanisms of bone ana-bolism regulated by statins[J]. Biosci Rep, 2012,32(6):511-519. |
[35] | Wang Y, Zheng Y, Wang Z , et al. 10 -7 M 17β-oestradiol enhances odonto/osteogenic potency of human den-tal pulp stem cells by activation of the NF-κB pathway [J]. Cell Prolif, 2013,46(6):677-684. |
[1] | 张敏,万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470. |
[2] | 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477. |
[3] | 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31. |
[4] | 程国平,丁一,郭淑娟. 静电纺丝纤维作为牙周药物传递系统的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 565-570. |
[5] | 姜亦洋,刘怡. 甲基化对牙周炎发生与发展的影响及临床应用[J]. 国际口腔医学杂志, 2019, 46(5): 593-603. |
[6] | 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436. |
[7] | 胡巍,王译凡,袁一方,李影,郭斌. 节律基因调控成骨和破骨活动机制的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 302-307. |
[8] | 李龙飚,汪成林,叶玲. 天然支架材料在牙髓组织工程再生中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 666-672. |
[9] | 李婷婷,张玉峰,王若茜,黄智庆,谢律,薛艺凡,王宇蓝. 石墨烯及其衍生物改性复合材料促成骨机制和应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 673-677. |
[10] | 叶畅畅, 赵蕾, 王冬青, 王晓丽, 王海燕, 游梦, 黄萍, 吴亚菲. 妊娠期牙周疾病的防治策略[J]. 国际口腔医学杂志, 2018, 45(5): 501-508. |
[11] | 易芳,王斯任,褚衍昊,卢燕勤. 骨组织工程支架材料修复牙槽嵴裂的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 603-610. |
[12] | 吉宁, 赵行, 曾昕, 陈谦明. 核苷类抗疱疹病毒药物的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 351-357. |
[13] | 张鑫, 汪成林, 杨静, 叶玲. 牙髓干细胞的表观遗传调控[J]. 国际口腔医学杂志, 2018, 45(3): 261-266. |
[14] | 杨鑫, 李思洁, 赵玮. Wnt信号通路在调控牙髓干细胞多向分化及炎症损伤修复中的作用[J]. 国际口腔医学杂志, 2018, 45(3): 286-290. |
[15] | 张艺馨, 李磊. 磷酸钙支架-药物缓释体系在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 346-350. |
|