国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (6): 680-686.doi: 10.7518/gjkq.2019091
Sun Zhaoze1,2,3,Liu Shuang2,3,Li Shu1,2,3()
摘要:
在神经发育过程中,神经导向分子以非常精确的方式引导轴突沿特定的路径生长延伸。随着对神经导向分子及其受体研究的不断深入,发现神经导向分子不仅能引导轴突生长,而且还能够通过多种信号通路广泛参与血管生成、骨再生甚至是口腔组织的发育和再生。这为研究和发展口腔疾病的治疗措施提供了新的思路。本文就目前发现的4类主要的神经导向分子(Slit、Semaphorin、Netrin和Ephrin)在组织再生尤其口腔组织再生中的相关作用进行综述。
中图分类号:
[1] | Kolodkin AL, Tessier-Lavigne M . Mechanisms and molecules of neuronal wiring: a primer[J]. Cold Spring Harb Perspect Biol, 2011,3(6). doi: 10.1101/cshperspect.a001727. |
[2] | Dickson BJ, Senti KA . Axon guidance: growth cones make an unexpected turn[J]. Curr Biol, 2002,12(6):R218-R220. |
[3] | Tessier-Lavigne M, Goodman CS . The molecular biology of axon guidance[J]. Science, 1996,274(5290):1123-1133. |
[4] | Suter DM, Forscher P . An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance[J]. Curr Opin Neurobiol, 1998,8(1):106-116. |
[5] | Xu XY, Li X, Wang J , et al. Concise review: perio-dontal tissue regeneration using stem cells: strategies and translational considerations[J]. Stem Cells Transl Med, 2019,8(4):392-403. |
[6] | Wang KH, Brose K, Arnott D , et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching[J]. Cell, 1999,96(6):771-784. |
[7] | Wong K, Park HT, Wu JY , et al. Slit proteins: mo-lecular guidance cues for cells ranging from neurons to leukocytes[J]. Curr Opin Genet Dev, 2002,12(5):583-591. |
[8] | Alto LT, Terman JR . Semaphorins and their signaling mechanisms[J]. Methods Mol Biol, 2017,1493:1-25. |
[9] | Jongbloets BC, Pasterkamp RJ . Semaphorin signal-ling during development[J]. Development, 2014,141(17):3292-3297. |
[10] | Garrett AM, Jucius TJ, Sigaud LP , et al. Analysis of expression pattern and genetic deletion of Netrin5 in the developing mouse[J]. Front Mol Neurosci, 2016,9:3. |
[11] | Cirulli V, Yebra M . Netrins: beyond the brain[J]. Nat Rev Mol Cell Biol, 2007,8(4):296-306. |
[12] | Lai KO, Ip NY . Synapse development and plasticity: roles of ephrin/Eph receptor signaling[J]. Curr Opin Neurobiol, 2009,19(3):275-283. |
[13] | Xi HQ, Wu XS, Wei B , et al. Eph receptors and eph-rins as targets for cancer therapy[J]. J Cell Mol Med, 2012,16(12):2894-2909. |
[14] | Brose K, Tessier-Lavigne M . Slit proteins: key regu-lators of axon guidance, axonal branching, and cell migration[J]. Curr Opin Neurobiol, 2000,10(1):95-102. |
[15] | Song H, Ming G, He Z , et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides[J]. Science, 1998,281(5382):1515-1518. |
[16] | Winberg ML, Mitchell KJ, Goodman CS . Genetic analysis of the mechanisms controlling target selection: complementary and combinatorial functions of ne-trins, semaphorins, and IgCAMs[J]. Cell, 1998,93(4):581-591. |
[17] | Bashaw GJ, Goodman CS . Chimeric axon guidance receptors: the cytoplasmic domains of slit and netrin receptors specify attraction versus repulsion[J]. Cell, 1999,97(7):917-926. |
[18] | Cowan CW, Shao YR, Sahin M , et al. Vav family GEFs link activated Ephs to endocytosis and axon guidance[J]. Neuron, 2005,46(2):205-217. |
[19] | Sadri-Ardekani H, Atala A . Regenerative medicine[J]. Methods, 2016,99:1-2. |
[20] | Carmeliet P . Angiogenesis in life, disease and me-dicine[J]. Nature, 2005,438(7070):932-936. |
[21] | Blockus H, Chédotal A . Slit-Robo signaling[J]. Development, 2016,143(17):3037-3044. |
[22] | Li S, Huang L, Sun Y , et al. Slit2 promotes angio-genic activity via the Robo1-VEGFR2-ERK1/2 pathway in both in vivo and in vitro studies[J]. Invest Ophthalmol Vis Sci, 2015,56(9):5210-5217. |
[23] | Wu MF, Liao CY, Wang LY , et al. The role of Slit-Robo signaling in the regulation of tissue barriers[J]. Tissue Barriers, 2017,5(2):e1331155. |
[24] | Rama N, Dubrac A, Mathivet T , et al. Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization[J]. Nat Med, 2015,21(5):483-491. |
[25] | Kim J, Oh WJ, Gaiano N , et al. Semaphorin 3E- Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mecha-nism[J]. Genes Dev, 2011,25(13):1399-1411. |
[26] | Basile JR, Barac A, Zhu T , et al. Class Ⅳ sema-phorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B[J]. Cancer Res, 2004,64(15):5212-5224. |
[27] | Hu S, Liu Y, You T , et al. Semaphorin 7A promotes VEGFA/VEGFR2-mediated angiogenesis and intra-plaque neovascularization in ApoE -/- mice [J]. Front Physiol, 2018,9:1718. |
[28] | Yang X, Li S, Zhong J , et al. CD151 mediates netrin-1-induced angiogenesis through the Src-FAK-Paxil-lin pathway[J]. J Cell Mol Med, 2017,21(1):72-80. |
[29] | Lejmi E, Leconte L, Pédron-Mazoyer S , et al. Netrin- 4 inhibits angiogenesis via binding to neogenin and recruitment of Unc5B[J]. Proc Natl Acad Sci USA, 2008,105(34):12491-12496. |
[30] | Yang D, Jin C, Ma H , et al. EphrinB2/EphB4 path-way in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease[J]. Angio-genesis, 2016,19(3):297-309. |
[31] | Matsuo K, Irie N . Osteoclast-osteoblast communication[J]. Arch Biochem Biophys, 2008,473(2):201-209. |
[32] | Kim BJ, Lee YS, Lee SY , et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation[J]. J Clin Invest, 2018,128(4):1429-1441. |
[33] | Hayashi M, Nakashima T, Taniguchi M , et al. Osteo-protection by semaphorin 3A[J]. Nature, 2012,485(7396):69-74. |
[34] | Liu L, Wang J, Song X , et al. Semaphorin 3A pro-motes osteogenic differentiation in human alveolar bone marrow mesenchymal stem cells[J]. Exp Ther Med, 2018,15(4):3489-3494. |
[35] | Maruyama K, Kawasaki T, Hamaguchi M , et al. Bone-protective functions of Netrin 1 protein[J]. J Biol Chem, 2016,291(46):23854-23868. |
[36] | Irie N, Takada Y, Watanabe Y , et al. Bidirectional signaling through ephrinA2-EphA2 enhances clastogenesis and suppresses osteoblastogenesis[J]. J Biol Chem, 2009,284(21):14637-14644. |
[37] | Kalkan R, Tulay P . The interactions between bone remodelling, estrogen hormone and EPH family genes[J]. Crit Rev Eukaryot Gene Expr, 2018,28(2):135-138. |
[38] | 王丽美 . ephrinB2-EphB4正向信号介导的TNF-α调控成骨细胞分化过程中的作用研究[D]. 济南: 山东大学, 2017. |
Wang LM . Effects of ephrinB2-EphB4 forward signaling on TNF-α-regulated osteoblastic differenti-ation[D]. Jinan: Shandong University, 2017. | |
[39] | Shin JE, Cho Y . Epigenetic regulation of Axon re-generation after neural injury[J]. Mol Cells, 2017,40(1):10-16. |
[40] | Abe N, Cavalli V . Nerve injury signaling[J]. Curr Opin Neurobiol, 2008,18(3):276-283. |
[41] | 田乐 . 睫状神经营养因子CNTF和轴突导向因子Slit2在糖尿病角膜病变中的作用及分子机制研究[D]. 青岛: 青岛大学, 2015. |
Tian L . Role and molecular mechanism of ciliary neurotrophic factor CNTF and axon guidance factor Slit2 in diabetic keratopathy[D]. Qingdao: Qingdao University, 2015. | |
[42] | Zhang M, Zhou Q, Luo Y , et al. Semaphorin3A induces nerve regeneration in the adult cornea—a switch from its repulsive role in development[J]. PLoS One, 2018,13(1):e0191962. |
[43] | Lv J, Sun X, Ma J , et al. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor[J]. Biochem Biophys Res Commun, 2015,464(1):263-268. |
[44] | Afshari FT, Kwok JC, Fawcett JW . Astrocyte-pro-duced ephrins inhibit schwann cell migration via VAV2 signaling[J]. J Neurosci, 2010,30(12):4246-4255. |
[45] | Fredman G, Oh SF, Ayilavarapu S , et al. Impaired phagocytosis in localized aggressive periodontitis: rescue by Resolvin E1[J]. PLoS One, 2011,6(9):e24422. |
[46] | Zhao Y, Su Y, Ye L . Slit-Robo: a potential way to treat periodontitis[J]. Med Hypotheses, 2012,79(2):186-188. |
[47] | Wada N, Maeda H, Hasegawa D , et al. Semaphorin 3A induces mesenchymal-stem-like properties in human periodontal ligament cells[J]. Stem Cells Dev, 2014,23(18):2225-2236. |
[48] | Liu L, Wang J, Song X , et al. Semaphorin 3A pro-motes osteogenic differentiation in human alveolar bone marrow mesenchymal stem cells[J]. Exp Ther Med, 2018,15(4):3489-3494. |
[49] | Zhu SY, Wang PL, Liao CS , et al. Transgenic ex-pression of ephrinB2 in periodontal ligament stem cells (PDLSCs) modulates osteogenic differentiation via signaling crosstalk between ephrinB2 and EphB4 in PDLSCs and between PDLSCs and pre-osteo-blasts within co-culture[J]. J Periodontal Res, 2017,52(3):562-573. |
[50] | Heng BC, Wang S, Gong T , et al. EphrinB2 signaling enhances osteogenic/odontogenic differentiation of human dental pulp stem cells[J]. Arch Oral Biol, 2018,87:62-71. |
[51] | Li M, Zhang C, Jin L , et al. Porphyromonas gin-givalis lipopolysaccharide regulates ephrin/Eph signalling in human periodontal ligament fibroblasts[J]. J Periodontal Res, 2017,52(5):913-921. |
[52] | Yoshida S, Wada N, Hasegawa D , et al. Semaphorin 3A induces odontoblastic phenotype in dental pulp stem cells[J]. J Dent Res, 2016,95(11):1282-1290. |
[53] | Matsumura S, Quispe-Salcedo A, Schiller CM , et al. IGF-1 mediates EphrinB1 activation in regulating tertiary dentin formation[J]. J Dent Res, 2017,96(10):1153-1161. |
[54] | Cao Y, Song M, Kim E , et al. Pulp-dentin regenera-tion: current state and future prospects[J]. J Dent Res, 2015,94(11):1544-1551. |
[55] | Stokowski A, Shi S, Sun T , et al. EphB/ephrin-B in- teraction mediates adult stem cell attachment, sprea-ding, and migration: implications for dental tissue repair[J]. Stem Cells, 2007,25(1):156-164. |
[1] | 王家烯,吕鸣樾,袁泉. 黏性骨在口腔组织再生中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 594-602. |
[2] | 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478. |
[3] | 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358. |
[4] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632. |
[5] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[6] | 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488. |
[7] | 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391-397. |
[8] | 汪是琦,常雅琴,陈斌,谭葆春,泥艳红. 植骨术与植骨联用屏障膜在牙周再生治疗中临床疗效对比的系统评价与Meta分析[J]. 国际口腔医学杂志, 2020, 47(6): 644-651. |
[9] | 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285. |
[10] | 贾婷婷,颜世果. 特异性AT序列结合蛋白2在颌面部发育及牙周组织再生中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 320-325. |
[11] | 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54. |
[12] | 田江雪,莫龙义,贾小玥,刘程程,徐欣. 转化生长因子β在牙周炎发生发展中的作用及其机制[J]. 国际口腔医学杂志, 2018, 45(5): 553-559. |
[13] | 林云锋, 李松航. DNA折纸技术在干细胞领域应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 249-254. |
[14] | 刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民. 牙龈干细胞生物学潜能的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 55-58. |
[15] | 关巍, 汪昌宁. 脱细胞异体真皮基质在牙周病学中的应用[J]. 国际口腔医学杂志, 2017, 44(6): 669-673. |
|