Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (6): 660-663.doi: 10.7518/gjkq.2017.06.007

• Periodontitis • Previous Articles     Next Articles

Mechanism of pyroptosis and Porphyromonas gingivalis in periodontitis development process

Tang Qiuling, Li Gege, Pan Jiahui, Hou Yubo, Meng Yang, Yu Weixian.   

  1. Dept. of Periodontology, School and Hospital of Stomatology, Jilin University;Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
  • Received:2017-02-07 Revised:2017-07-15 Online:2017-11-01 Published:2017-11-01
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81570983) and Natural Science Foundation of Science and Technology Department of Jilin Province(20150101076JC).

Abstract: Pyroptosis is a typical form of programmed cell death mediated by inflammasomes. It leads to inflammatory response through the release of pro-inflammatory cytokines. Porphyromonas gingivalis is the keystone pathogen of periodontitis. On the one hand, it can activate thenucleotide-binding oligomerization domain like receptor protein 3 inflammasomes of macrophages in the periodontal tissue, and it also can promote pyroptosis that lead to the immune pathological damage of periodontal tissue; on the other hand, it restrain the pyroptosis of vascular endothelial cell and escape the killing of the immune system. In this paper, the recent progress and mechanism of pyroptosis in periodontitis are reviewed.

Key words: periodontitis, pyroptosis, mechanism

CLC Number: 

  • R781.4

TrendMD: 
[1] Ghonime MG, Shamaa OR, Eldomany RA, et al. Tyro-sine phosphatase inhibition induces an ASC-depen-dent pyroptosis[J]. Biochem Biophys Res Commun, 2012, 425(2):384-389.
[2] Bostanci N, Emingil G, Saygan B, et al. Expression and regulation of the NALP3 inflammasome complex in periodontal diseases[J]. Clin Exp Immunol, 2009, 157(3):415-422.
[3] Blander JM. A long-awaited merger of the pathways mediating host defence and programmed cell death [J]. Nat Rev Immunol, 2014, 14(9):601-618.
[4] Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommenda-tions of the Nomenclature Committee on Cell Death 2012[J]. Cell Death Differ, 2012, 19(1):107-120.
[5] Shi JJ, Zhao YE, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575):660-665.
[6] Hajishengallis G. Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1):30-44.
[7] Broz P. Immunology: caspase target drives pyroptosis [J]. Nature, 2015, 526(7575):642-643.
[8] Lim Y, Kumar S. A single cut to pyroptosis[J]. Onco-target, 2015, 6(35):36926-36927.
[9] He WT, Wan H, Hu L, et al. Gasdermin D is an exe-cutor of pyroptosis and required for interleukin-1β secretion[J]. Cell Res, 2015, 25(12):1285-1298.
[10] Genco RJ, Van Dyke TE. Prevention: reducing the risk of CVD in patients with periodontitis[J]. Nat Rev Cardiol, 2010, 7(9):479-480.
[11] Takahashi Y, Davey M, Yumoto H, et al. Fimbria-dependent activation of pro-inflammatory molecules in Porphyromonas gingivalis infected human aortic endothelial cells[J]. Cell Microbiol, 2006, 8(5):738- 757.
[12] Kataoka H, Kono H, Patel Z, et al. Evaluation of the contribution of multiple DAMPs and DAMP recep-tors in cell death-induced sterile inflammatory res-ponses[J]. PLoS One, 2014, 9(8):e104741.
[13] Ito Y, Bhawal UK, Sasahira T, et al. Involvement of HMGB1 and RAGE in IL-1β-induced gingival infla-mmation[J]. Arch Oral Biol, 2012, 57(1):73-80.
[14] Li G, Liang X, Lotze MT. HMGB1: the central cyto-kine for all lymphoid cells[J]. Front Immunol, 2013, 4(4):68.
[15] Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection[J]. Annu Rev Immunol, 2011, 29:139-162.
[16] Di Benedetto A, Gigante I, Colucci S, et al. Perio-dontal disease: linking the primary inflammation to bone loss[J]. Clin Dev Immunol, 2013, 2013:503754.
[17] Chakraborty R, Bhatt KH, Sodhi A. High mobility group box 1 protein synergizes with lipopolysacc-haride and peptidoglycan for nitric oxide production in mouse peritoneal macrophages in vitro [J]. Mol Immunol, 2013, 54(1):48-57.
[18] Man SM, Kanneganti TD. Gasdermin D: the long-awaited executioner of pyroptosis[J]. Cell Res, 2015, 25(11):1183-1184.
[19] Schroder K, Tschopp J. The inflammasones[J]. Cell, 2010, 140(6):821-832.
[20] Shi JJ, Zhao YE, Wang YP, et al. Inflammatory cas-pases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521):187.
[21] Suzuki T, Franchi L, Toma C, et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella -infected macrophages[J]. PLoS Pathog, 2007, 3(8):e111.
[22] Benedyk M, Mydel PM, Delaleu N, et al. Gingipains: critical factors in the development of aspiration pne-umonia caused by Porphyromonas gingivalis [J]. J Innate Immun, 2016, 8(2):185-198.
[23] Lausson S, Cressent M. Signal transduction pathways mediating the effect of adrenomedullin on osteoblast survival[J]. J Cell Biochem, 2011, 112(12):3807- 3815.
[24] 陈玉婷, 宋祥晨, 张福萍, 等. 促凋亡蛋白Bim、Bax和Bak在牙龈蛋白酶诱导成骨细胞凋亡中的表达[J]. 中华口腔医学杂志, 2013, 48(5):272-277.
Chen YT, Song XC, Zhang FP, et al. Expression of Bim, Bax and Bak in the process of gingipain-induced osteoblast apoptosis[J]. Chin J Stomatol, 2013, 48 (5):272-277.
[25] Huang MT, Taxman DJ, Holley-Guthrie EA, et al. Critical role of apoptotic speck protein containing a caspase recruitment domain(ASC) and NLRP3 in causing necrosis and ASC speck formation induced by Porphyromonas gingivalis in human cells[J]. J Immunol, 2009, 182(4):2395-2404.
[26] Kolev M, Le Friec G, Kemper C. Complement—tap-ping into new sites and effector systems[J]. Nat Rev Immunol, 2014, 14(12):811-820.
[27] Maekawa T, Krauss JL, Abe T, et al. Porphyromonas gingivalis manipulates complement and TLR signa-ling to uncouple bacterial clearance from inflamma-tion and promote dysbiosis[J]. Cell Host Microbe, 2014, 15(6):768-778.
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[3] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[4] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[5] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[6] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[7] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[8] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[9] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[10] Wang Jingyan,Qin Man,Wang Xin.. Research progress on the clinical characteristics of Axenfeld-Rieger syndrome and the pathogenic mechanisms of paired-like homeodomain transcription factor 2 mutations [J]. Int J Stomatol, 2023, 50(2): 224-229.
[11] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[12] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[13] Gong Tao,Li Yuqing,Zhou Xuedong.. Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans [J]. Int J Stomatol, 2022, 49(5): 506-510.
[14] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[15] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .