Int J Stomatol ›› 2022, Vol. 49 ›› Issue (5): 506-510.doi: 10.7518/gjkq.2022083

• Oral Microbiology • Previous Articles     Next Articles

Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans

Gong Tao(),Li Yuqing,Zhou Xuedong.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-01-06 Revised:2022-05-08 Online:2022-09-01 Published:2022-09-16
  • Contact: Xuedong. Zhou;
  • Supported by:
    National Natural Science Foundation of China(81670978)


Dental caries is one of the most prevalent infectious diseases. Streptococcus mutans (S. mutans) is regarded as the major etiological pathogen. Sugars are the major carbohydrate sources used by bacteria and act as important substance basis for energy metabolism, material metabolism and physiological functions. Sugar transporter is the first process of sugar metabolism and is closely related to the formation of cariogenic virulence factors of S. mutans. This article reviewed the research progress on the ways of sugar transporter and its regulatory mechanisms of S. mutans to provide a reference for the research of sugar transport-related mechanisms in other oral bacterial.

Key words: dental caries, Streptococcus mutans, sugar transporter, regulatory mechanisms

CLC Number: 

  • R 788


Fig 1

PTS and ABC transporter"

1 周学东, 凌均棨, 梁景平, 等. 龋病临床治疗难度因素及处理[J]. 华西口腔医学杂志, 2017, 35(1): 1-7.
Zhou XD, Ling JQ, Liang JP, et al. Difficulty influence factors of dental caries clinical treatment[J]. West China J Stomatol, 2017, 35(1): 1-7.
2 GBD Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100): 1211-1259.
3 周学东, 程磊, 郑黎薇. 全生命周期的龋病管理[J]. 中华口腔医学杂志, 2018, 53(6): 367-373.
Zhou XD, Cheng L, Zheng, LW. Strategies of caries management in whole life cycle[J]. Chin J Stomatol, 2018, 53(6): 367-373.
4 王兴. 第四次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2018: 25-33.
Wang X. The fourth national oral health epidemiological survey report[M]. Beijing: People’s Medical Publishing House, 2018: 25-33.
5 周学东, 岳松龄. 实用龋病学[M]. 北京: 人民卫生出版社, 2008: 184-186.
Zhou XD, Yue SL. Applied cariology[M]. Beijing: People’s Medical Publishing House, 2008: 184-186.
6 Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions[J]. Nat Rev Microbiol, 2018, 16(12): 745-759.
7 Koo H, Allan RN, Howlin RP, et al. Targeting microbial biofilms: current and prospective therapeutic strategies[J]. Nat Rev Microbiol, 2017, 15(12): 740-755.
8 Liu Y, Ren Z, Hwang G, et al. Therapeutic strategies targeting cariogenic biofilm microenvironment[J]. Adv Dent Res, 2018, 29(1): 86-92.
9 Cugini C, Shanmugam M, Landge N, et al. The role of exopolysaccharides in oral biofilms[J]. J Dent Res, 2019, 98(7): 739-745.
10 Gao L, Xu TS, Huang G, et al. Oral microbiomes: more and more importance in oral cavity and whole body[J]. Protein Cell, 2018, 9(5): 488-500.
11 Kawada-Matsuo M, Oogai Y, Komatsuzawa H. Sugar allocation to metabolic pathways is tightly regulated and affects the virulence of Streptococcus mutans [J]. Genes (Basel), 2016, 8(1): E11.
12 Vadeboncoeur C, Pelletier M. The phosphoenolpyruvate: sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism[J]. FEMS Microbiol Rev, 1997, 19(3): 187-207.
13 Cvitkovitch DG, Boyd DA, Hamilton IR. Regulation of sugar transport via the multiple sugar metabolism operon of Streptococcus mutans by the phosphoenolpyruvate phosphotransferase system[J]. J Bacteriol, 1995, 177(19): 5704-5706.
14 Ajdić D, Pham VT. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays[J]. J Bacteriol, 2007, 189(14): 5049-5059.
15 刘倩钰, 吴丽雯, 牛建军, 等. 细菌磷酸转移酶系统(PTS)的组成与功能研究进展[J]. 微生物学通报, 2020, 47(7): 2266-2277.
Liu QY, Wu LW, Niu JJ, et al. Research progress of the composition and function of bacterial phosph-otransferase system[J]. Microbiology, 2020, 47(7): 2266-2277.
16 Ajdić D, McShan WM, McLaughlin RE, et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen[J]. Proc Natl Acad Sci U S A, 2002, 99(22): 14434-14439.
17 Zeng L, Chakraborty B, Farivar T, et al. Coordinated regulation of the EIIMan and fruRKI operons of Streptococcus mutans by global and fructose-speci-fic pathways[J]. Appl Environ Microbiol, 2017, 83(21): e01403-e01417.
18 Webb AJ, Homer KA, Hosie AH. Two closely related ABC transporters in Streptococcus mutans are involved in disaccharide and/or oligosaccharide uptake[J]. J Bacteriol, 2008, 190(1): 168-178.
19 曾荟荟, 凌均棨. 三磷酸腺苷结合盒外排子对变异链球菌毒力因子影响的研究进展[J]. 中华口腔医学研究杂志(电子版), 2015, 9(3): 247-251.
Zeng HH, Ling JQ. Effects of ATP-binding cassette exporters on virulence factors in Streptococcus mutans [J]. Chin J Stomatol Res (Electr Ed), 2015, 9(3): 247-251.
20 Baker JL, Lindsay EL, Faustoferri RC, et al. Characterization of the trehalose utilization operon in Streptococcus mutans reveals that the TreR transcriptional regulator is involved in stress response pathways and toxin production[J]. J Bacteriol, 2018, 200(12): e00057-e00018.
21 Zeng L, Burne RA. Transcriptional regulation of the cellobiose operon of Streptococcus mutans [J]. J Bacteriol, 2009, 191(7): 2153-2162.
22 Li ZB, Xiang ZT, Zeng JM, et al. A GntR family transcription factor in Streptococcus mutans regulates biofilm formation and expression of multiple sugar transporter genes[J]. Front Microbiol, 2018, 9: 3224.
23 Vujanac M, Iyer VS, Sengupta M, et al. Regulation of Streptococcus mutans PTS Bio by the transcriptional repressor NigR[J]. Mol Oral Microbiol, 2015, 30(4): 280-294.
24 Abranches J, Chen YY, Burne RA. Characterization of Streptococcus mutans strains deficient in EⅡABMan of the sugar phosphotransferase system[J]. Appl Environ Microbiol, 2003, 69(8): 4760-4769.
25 Zeng L, Das S, Burne RA. Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression[J]. J Bacteriol, 2010, 192(9): 2434-2444.
26 Moye ZD, Burne RA, Zeng L. Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans [J]. Appl Environ Microbiol, 2014, 80(16): 5053-5067.
27 Burne RA, Schilling K, Bowen WH, et al. Expression, purification, and characterization of an exo-beta-D-fructosidase of Streptococcus mutans [J]. J Bacteriol, 1987, 169(10): 4507-4517.
28 Zeng L, Wen ZT, Burne RA. A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans [J]. Mol Microbiol, 2006, 62(1): 187-200.
29 Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients[J]. Nat Rev Microbiol, 2008, 6(8): 613-624.
30 吴艳, 顾阳, 任聪, 等. 微生物分解代谢物控制蛋白CcpA的研究进展[J]. 生命科学, 2011, 23(9): 882-890.
Wu Y, Gu Y, Ren C, et al. Recent research on catabolite control protein A in microorganisms[J]. Chin Bulletin Life Sci, 2011, 23(9): 882-890.
31 Moye ZD, Zeng L, Burne RA. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans [J]. J Oral Microbiol, 2014, 6: 10.3402/jom.v6.24878.
32 Novichkov PS, Laikova ON, Novichkova ES, et al. RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes[J]. Nucleic Acids Res, 2010, 38(Database issue): D111-D118.
33 Kim HM, Waters A, Turner ME, et al. Regulation of cid and lrg expression by CcpA in Streptococcus mutans [J]. Microbiology (Reading), 2019, 165(1): 113-123.
34 Abranches J, Nascimento MM, Zeng L, et al. CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans [J]. J Bacteriol, 2008, 190(7): 2340-2349.
35 Spatafora G, Rohrer K, Barnard D, et al. A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo [J]. Infect Immun, 1995, 63(7): 2556-2563.
36 Zeng L, Burne RA. Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans [J]. Mol Microbiol, 2008, 70(1): 197-208.
[1] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[2] Zhu Jinyi,Fan Qi,Zhou Yuan,Zou Jing,Huang Ruijie. Research progress of salivary proteins as predictive biomarkers for early childhood caries [J]. Int J Stomatol, 2022, 49(2): 212-219.
[3] Liu Chengcheng, Ding Yi. Clinical diagnosis, treatment, and management strategies of common oral infectious disease during pregnancy [J]. Int J Stomatol, 2021, 48(6): 621-628.
[4] Fan Yu,Cheng Lei. Smoking affects the oral microenvironment and its role in the progression of dental caries [J]. Int J Stomatol, 2021, 48(5): 609-613.
[5] Yang Zhilei,Liu Baoying. Research progress on the microecology of dental plaque in caries [J]. Int J Stomatol, 2020, 47(5): 506-514.
[6] Wang Xiaobo,Lin Shiyao,Li Xia. Research progress on the relationship between mother and childhood dental caries [J]. Int J Stomatol, 2019, 46(4): 469-474.
[7] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
[8] Ding Jie, Song Guangtai.. Clinical application of minimally invasive techniques in the management of children’s dental caries [J]. Inter J Stomatol, 2018, 45(4): 473-479.
[9] Gao Xuebin, Zhang Qi, Li Jing, Bi Ye, Yang Hua, Huang Yang. A clinical study on the choice of etching agent for pit and fissure sealing in younger children [J]. Inter J Stomatol, 2017, 44(4): 433-436.
[10] Zheng Liwei1, Zou Jing1, Xia Bin2, Liu Yingqun3, Huang Yang4, Zhao Jin5. Restoration of preformed metal crown on dental caries of primary molars [J]. Inter J Stomatol, 2017, 44(2): 125-129.
[11] Wang Yuxia, Zhou Xuedong, Li Mingyun.. A review on the role of Veillonella in caries and its interaction with Streptococcus [J]. Inter J Stomatol, 2017, 44(2): 195-199.
[12] Zhao Xingfu, Jiang Shan, Huang Xiaojing, Yan Fuhua. Differential expression of surface-associated proteins in clinical isolations of Streptococcus mutans [J]. Inter J Stomatol, 2016, 43(3): 273-277.
[13] Wang Yizhou, Zhang Yaqi, Niu Xuewei, Zhang Zhimin. The groE operon of Streptococcus mutans with its expression and regulation [J]. Inter J Stomatol, 2016, 43(3): 348-351.
[14] Shi Jing, Yan Zhengbin, Hou Jingqiu, Peng Hui. Influence of bracketless invisible aligner technique and conventional technique on the number of Streptococcus mutans and Porphyromonas gingivalis [J]. Inter J Stomatol, 2016, 43(2): 151-154.
[15] Feng Ruzhou, Liu Juan, Lü Changhai . Fluoride application for dental caries prevention and control in children and adolescents [J]. Inter J Stomatol, 2016, 43(1): 118-.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .