Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (2): 195-199.doi: 10.7518/gjkq.2017.02.016

• Reviews • Previous Articles     Next Articles

A review on the role of Veillonella in caries and its interaction with Streptococcus

Wang Yuxia, Zhou Xuedong, Li Mingyun.   

  1. State Key Laboratory of Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-03-20 Online:2017-03-01 Published:2017-03-01
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(81400501, 81430011) and the International Science and Technology Cooperation Program of China(2014DFE30180).

Abstract: The genus Veillonella is a member of the normal oral flora and is highly abundant in the human oral cavity. Veillonella utilizes lactate, which ameliorates the caries process. However, Resultsof in vitro studies and rat model systems are ambiguous. With the development of human oral microbiome research, several studies reported that the frequency of Veillonella in caries-activated individuals is higher than that in caries-free ones, and the distribution of Veillonella is highly related to some cariogenic Streptococcus species. Veillonella facilitates the action of some cariogenic Streptococcus species, such as Streptococcus mutans in caries development. These findings create new focus on the genus Veillonella as a factor relating to caries. This paper provides a review on the distribution of Veillonella in human oral cavity, the relationship between Veillonella and caries, and the relationship between Veillonella and Streptococcus species related to caries.

Key words: Veillonella, Streptococcus, dental caries

CLC Number: 

  • R780.2

TrendMD: 
[1] 樊明文, 周学东. 牙体牙髓病学[M]. 3版. 北京: 人民卫生出版社, 2008:3-49. Fan MW, Zhou XD. Operative dentistry and endo-dontics[M]. 3rd ed. Beijing: People’s Medical Pub-lishing House, 2008:3-49.
[2] Marsh PD. Microbiology of dental plaque biofilms and their role in oral health and caries[J]. Dent Clin North Am, 2010, 54(3):441-454.
[3] Peterson SN, Snesrud E, Liu J, et al. The dental plaque microbiome in health and disease[J]. PLoS ONE, 2013, 8(3):e58487.
[4] Oda Y, Hayashi F, Okada M. Longitudinal study of dental caries incidence associated with Streptococcus mutans and Streptococcus sobrinus in patients with intellectual disabilities[J]. BMC Oral Health, 2015, 2(15):102-106.
[5] Gomar-Vercher S, Cabrera-Rubio R, Mira A, et al. Relationship of children’s salivary microbiota with their caries status: a pyrosequencing study[J]. Clin Oral Investig, 2014, 18(9):2087-2094.
[6] Loesche WJ. Role of Streptococcus mutans in human dental decay[J]. Microbiol Rev, 1986, 50(4):353- 380.
[7] He X, McLean JS, Guo L, et al. The social structure of microbial community involved in colonization resistance[J]. ISME J, 2014, 8(3):564-574.
[8] Kreth J, Zhang Y, Herzberg MC. Streptococcal anta-gonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Strepto-coccus mutans [J]. J Bacteriol, 2008, 190(13):4632- 4640.
[9] Do T, Sheehy EC, Mulli T, et al. Transcriptomic analysis of three Veillonella spp. present in carious dentine and in the saliva of caries-free individuals [J]. Front Cell Infect Microbiol, 2015, 5(25):21-28.
[10] Mashima I, Nakazawa F. The influence of oral Veillonella species on biofilms formed by Strep-tococcus species [J]. Anaerobe, 2014, 28:54-61.
[11] Byun R, Carlier JP, Jacques NA, et al. Veillonella denticariosi sp. nov., isolated from human carious dentine[J]. Int J Syst Evol Microbiol, 2007, 57(12): 2844-2848.
[12] Arif N, Do T, Byun R, et al. Veillonella rogosae sp. nov., an anaerobic, gram-negative coccus isolated from dental plaque[J]. Int J Syst Evol Microbiol, 2008, 58(Pt 3):581-584.
[13] Mashima I, Kamaguchi A, Miyakawa H, et al. Veillonella tobetsuensis sp. nov., an anaerobic, gram-negative coccus isolated from human tongue biofilms[J]. Int J Syst Evol Microbiol, 2013, 63(4): 1443-1449.
[14] Zhou P, Liu J, Merritt J, et al. A YadA-like autotran-sporter, Hag1 in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral stre-ptococci, Porphyromonas gingivalis , and human oral buccal cells[J]. Mol Oral Microbiol, 2015, 30(4): 269-279.
[15] Kistler JO, Pesaro M, Wade WG, et al. Development and pyrosequencing analysis of an in - vitro oral biofilm model[J]. BMC Microbiol, 2015, 15(24):e1803.
[16] Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, et al. The oral metagenome in health and disease[J]. ISME J, 2012, 6(1):46-56.
[17] Xu H, Hao W, Zhou Q, et al. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars[J]. PLoS One, 2014, 9(2):e89269.
[18] Schulze-Schweifing K, Banerjee A, Wade WG, et al. Comparison of bacterial culture and 16S rRNA community profiling by clonal analysis and pyrose-quencing for the characterization of the dentine caries-associated microbiome[J]. Front Cell Infect Microbiol, 2014, 4(164):1-8.
[19] Johansson I, Witkowska E, Kaveh B, et al. The mi-crobiome in populations with a low and high pre-valence of caries[J]. J Dent Res, 2016, 95(1):80-86.
[20] Becker MR, Paster BJ, Leys EJ, et al. Molecular analysis of bacterial species associated with child-hood caries[J]. J Clin Microbiol, 2002, 40(3):1001- 1009.
[21] Peterson SN, Meissner T, Su AI, et al. Functional expression of dental plaque microbiota[J]. Front Cell Infect Microbiol, 2014, 4:108.
[22] Bradshaw DJ, Marsh PD. Analysis of pH-driven disruption of oral microbial communities in vitro [J]. Caries Res, 1998, 32(6):456-462.
[23] Delwiche EA, Pestka JJ, Tortorello ML. The veillo-nellae : gram-negative cocci with a unique physio-logy[J]. Annu Rev Microbiol, 1985, 39:175-193.
[24] Mikx FH, van der Hoeven JS. Symbiosis of Strep-tococcus mutans and Veillonella alcalescens in mixed continuous cultures[J]. Arch Oral Biol, 1975, 20(7):407-410.
[25] Tanner AC, Mathney JM, Kent RL, et al. Cultivable anaerobic microbiota of severe early childhood caries[J]. J Clin Microbiol, 2011, 49(4):1464-1474.
[26] Lima KC, Coelho LT, Pinheiro IV, et al. Microbiota of dentinal caries as assessed by reverse-capture checkerboard analysis[J]. Caries Res, 2011, 45(1): 21-30.
[27] Noorda WD, Purdell-Lewis DJ, van Montfort AM, et al. Monobacterial and mixed bacterial plaques of Streptococcus mutans and Veillonella alcalescens in an artificial mouth: development, metabolism, and effect on human dental enamel[J]. Caries Res, 1988, 22(6):342-347.
[28] Chalmers NI, Palmer RJ Jr, Cisar JO, et al. Charac-terization of a Streptococcus sp.- Veillonella sp. community micromanipulated from dental plaque[J]. J Bacteriol, 2008, 190(24):8145-8154.
[29] Egland PG, Palmer RJ Jr, Kolenbrander PE. Inter-species communication in Streptococcus gordonii - Veillonella atypica biofilms: signaling in flow con-ditions requires juxtaposition[J]. Proc Natl Acad Sci USA, 2004, 101(48):16917-16922.
[30] Levin-Sparenberg E, Shin JM, Hastings EM, et al. High throughput quantitative method for assessing coaggregation among oral bacterial species[J]. Lett Appl Microbiol, 2016, 63(4):274-281.
[31] Palmer RJ Jr, Diaz PI, Kolenbrander PE. Rapid succession within the Veillonella population of a developing human oral biofilm in situ[J]. J Bacteriol, 2006, 188(11):4117-4124.
[32] McBride BC, van der Hoeven JS. Role of interbac-terial adherence in colonization of the oral cavities of gnotobiotic rats infected with Streptococcus mutans and Veillonella alcalescens [J]. Infect Immun, 1981, 33(2):467-472.
[33] Kara D, Luppens SB, Cate JM. Differences between single- and dual-species biofilms of Streptococcus mutans and Veillonella parvula in growth, acido-genicity and susceptibility to chlorhexidine[J]. Eur J Oral Sci, 2006, 114(1):58-63.
[34] Kara D, Luppens SB, van Marle J, et al. Microstruc-tural differences between single-species and dual-species biofilms of Streptococcus mutans and Vei-llonella parvula , before and after exposure to chlo-rhexidine[J]. FEMS Microbiol Lett, 2007, 271(1): 90-97.
[35] Liu J, Wu C, Huang IH, et al. Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures[J]. Microbiology, 2011, 157 (Pt 9):2433-2444.
[36] Mashima I, Nakazawa F. The interaction between Streptococcus spp. and Veillonella tobetsuensis in the early stages of oral biofilm formation[J]. J Bac-teriol, 2015, 197(13):2104-2111.
(本文采编 王晴)
[1] Gong Tao,Li Yuqing,Zhou Xuedong.. Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans [J]. Int J Stomatol, 2022, 49(5): 506-510.
[2] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[3] Zhu Jinyi,Fan Qi,Zhou Yuan,Zou Jing,Huang Ruijie. Research progress of salivary proteins as predictive biomarkers for early childhood caries [J]. Int J Stomatol, 2022, 49(2): 212-219.
[4] Liu Chengcheng, Ding Yi. Clinical diagnosis, treatment, and management strategies of common oral infectious disease during pregnancy [J]. Int J Stomatol, 2021, 48(6): 621-628.
[5] Fan Yu,Cheng Lei. Smoking affects the oral microenvironment and its role in the progression of dental caries [J]. Int J Stomatol, 2021, 48(5): 609-613.
[6] Yang Zhilei,Liu Baoying. Research progress on the microecology of dental plaque in caries [J]. Int J Stomatol, 2020, 47(5): 506-514.
[7] Wang Xiaobo,Lin Shiyao,Li Xia. Research progress on the relationship between mother and childhood dental caries [J]. Int J Stomatol, 2019, 46(4): 469-474.
[8] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
[9] Ding Jie, Song Guangtai.. Clinical application of minimally invasive techniques in the management of children’s dental caries [J]. Inter J Stomatol, 2018, 45(4): 473-479.
[10] Gao Xuebin, Zhang Qi, Li Jing, Bi Ye, Yang Hua, Huang Yang. A clinical study on the choice of etching agent for pit and fissure sealing in younger children [J]. Inter J Stomatol, 2017, 44(4): 433-436.
[11] Gai Kuo, Hao Liying, Jiang Li.. Study of the adhesion mechanism of oral Streptococcus mutans based on atomic force microscope [J]. Inter J Stomatol, 2017, 44(3): 320-324.
[12] Zheng Liwei1, Zou Jing1, Xia Bin2, Liu Yingqun3, Huang Yang4, Zhao Jin5. Restoration of preformed metal crown on dental caries of primary molars [J]. Inter J Stomatol, 2017, 44(2): 125-129.
[13] Liu Shiyu, He Jinzhi, Li Mingyun.. Saccharomyces albicans: its dental caries correlation and mechanism [J]. Inter J Stomatol, 2017, 44(1): 103-107.
[14] Liu Kun, Hou Benxiang.. Biological activity of Enterococcus faecalis and Streptococcus mutans lipoteichoic acid [J]. Inter J Stomatol, 2017, 44(1): 118-124.
[15] Zhang Ying, Li Mingyong, Huo Li, Meng Yuan. Biosynthesis of autoinducer-2 and determination of its bioactivity in vitro [J]. Inter J Stomatol, 2016, 43(5): 519-523.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .