Int J Stomatol ›› 2022, Vol. 49 ›› Issue (2): 212-219.doi: 10.7518/gjkq.2022028
• Reviews • Previous Articles Next Articles
Zhu Jinyi(),Fan Qi,Zhou Yuan,Zou Jing,Huang Ruijie()
CLC Number:
[1] |
Kazeminia M, Abdi A, Shohaimi S, et al. Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: a systematic review and meta-analysis[J]. Head Face Med, 2020, 16(1): 22.
doi: 10.1186/s13005-020-00237-z |
[2] | American Academy of Pediatric Dentistry. Policy on early childhood caries (ECC): classifications, consequences, and preventive strategies[J]. Pediatr Dent, 2016, 38(6): 52-54. |
[3] | 卫新. 国家卫生计生委发布全国第四次口腔健康流行病学调查结果[J]. 中国卫生画报, 2017(9): 64. |
Wei X. The National Health and Family Planning Commission releases the results of the fourth national oral health epidemiological survey[J]. Chin Health Pictor, 2017(9): 64. | |
[4] | 邹静. 儿童龋病的风险性评估[J]. 华西口腔医学杂志, 2014, 32(1): 1-4. |
Zou J. Caries risk assessment in children[J]. West China J Stomatol, 2014, 32(1): 1-4. | |
[5] |
Hemadi AS, Huang R, Zhou Y, et al. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment[J]. Int J Oral Sci, 2017, 9(11): e1.
doi: 10.1038/ijos.2017.35 |
[6] | 邓晓宇, 张蕴涵, 邹静. 低龄儿童龋的早期生物学管理[J]. 国际口腔医学杂志, 2020, 47(5): 581-588. |
Deng XY, Zhang YH, Zou J. Early biological management of early childhood caries[J]. Int J Stomatol, 2020, 47(5): 581-588. | |
[7] |
Khurshid Z, Naseem M, Sheikh Z, et al. Oral antimicrobial peptides: types and role in the oral cavity[J]. Saudi Pharm J, 2016, 24(5): 515-524.
pmid: 27752223 |
[8] |
Steinstraesser L, Kraneburg U, Jacobsen F, et al. Host defense peptides and their antimicrobial-immunomodulatory duality[J]. Immunobiology, 2011, 216(3): 322-333.
doi: 10.1016/j.imbio.2010.07.003 pmid: 20828865 |
[9] |
Mai S, Mauger MT, Niu LN, et al. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections[J]. Acta Biomater, 2017, 49: 16-35.
doi: 10.1016/j.actbio.2016.11.026 |
[10] |
Jurczak A, Kościelniak D, Papież M, et al. A study on β-defensin-2 and histatin-5 as a diagnostic marker of early childhood caries progression[J]. Biol Res, 2015, 48: 61.
doi: 10.1186/s40659-015-0050-7 pmid: 26520150 |
[11] |
Colombo NH, Ribas LF, Pereira JA, et al. Antimicrobial peptides in saliva of children with severe early childhood caries[J]. Arch Oral Biol, 2016, 69: 40-46.
doi: 10.1016/j.archoralbio.2016.05.009 |
[12] |
Phattarataratip E, Olson B, Broffitt B, et al. Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides[J]. Mol Oral Microbiol, 2011, 26(3): 187-199.
doi: 10.1111/j.2041-1014.2011.00607.x pmid: 21545696 |
[13] |
Toomarian L, Sattari M, Hashemi N, et al. Comparison of neutrophil apoptosis, α-defensins and calprotectin in children with and without severe early childhood caries[J]. Iran J Immunol, 2011, 8(1): 11-19.
doi: IJIv8i1A2 pmid: 21427491 |
[14] |
Lips A, Antunes LS, Antunes LA, et al. Genetic polymorphisms in DEFB1 and miRNA202 are involved in salivary human β-defensin 1 levels and caries experience in children[J]. Caries Res, 2017, 51(3): 209-215.
doi: 10.1159/000458537 |
[15] | Ribeiro TR, Dria KJ, de Carvalho CB, et al. Salivary peptide profile and its association with early childhood caries[J]. Int J Paediatr Dent, 2013, 23(3): 225-234. |
[16] |
Nilsson BO. What can we learn about functional importance of human antimicrobial peptide LL-37 in the oral environment from severe congenital neutropenia (Kostmann disease)[J]. Peptides, 2020, 128: 170311.
doi: 10.1016/j.peptides.2020.170311 |
[17] |
Davidopoulou S, Diza E, Menexes G, et al. Salivary concentration of the antimicrobial peptide LL-37 in children[J]. Arch Oral Biol, 2012, 57(7): 865-869.
doi: 10.1016/j.archoralbio.2012.01.008 pmid: 22336091 |
[18] |
Wuersching SN, Huth KC, Hickel R, et al. Inhibitory effect of LL-37 and human lactoferricin on growth and biofilm formation of anaerobes associated with oral diseases[J]. Anaerobe, 2021, 67: 102301.
doi: 10.1016/j.anaerobe.2020.102301 pmid: 33249255 |
[19] | Levine M. Susceptibility to dental caries and the salivary proline-rich proteins[J]. Int J Dent, 2011, 2011: 1-13. |
[20] |
Bhalla S, Tandon S, Satyamoorthy K. Salivary proteins and early childhood caries: a gel electrophoretic analysis[J]. Contemp Clin Dent, 2010, 1(1): 17-22.
doi: 10.4103/0976-237X.62515 |
[21] |
Fonteles CSR, Guerra MH, Ribeiro TR, et al. Association of free amino acids with caries experience and mutans streptococci levels in whole saliva of children with early childhood caries[J]. Arch Oral Biol, 2009, 54(1): 80-85.
doi: 10.1016/j.archoralbio.2008.07.011 |
[22] |
Zakhary GM, Clark RM, Bidichandani SI, et al. Acidic proline-rich protein Db and caries in young children[J]. J Dent Res, 2007, 86(12): 1176-1180.
doi: 10.1177/154405910708601207 pmid: 18037651 |
[23] |
Azen EA, Maeda N. Molecular genetics of human salivary proteins and their polymorphisms[J]. Adv Hum Genet, 1988, 17: 141-199.
pmid: 3055850 |
[24] |
Strömberg N, Esberg A, Sheng NF, et al. Genetic- and lifestyle-dependent dental caries defined by the acidic proline-rich protein genes PRH1 and PRH2[J]. EBioMedicine, 2017, 26: 38-46.
doi: S2352-3964(17)30462-0 pmid: 29191562 |
[25] | 胡云明, 黄美华. 唾液富组蛋白在口腔疾病中的作用[J]. 国外医学·口腔医学分册, 1995, 22(4): 200-203. |
Hu YM, Huang MH. The role of saliva histone-rich protein in oral diseases[J]. Foreign Med Sci(Stomatol), 1995, 22(4): 200-203. | |
[26] |
Sun X, Huang X, Tan X, et al. Salivary peptidome profiling for diagnosis of severe early childhood caries[J]. J Transl Med, 2016, 14(1): 240.
doi: 10.1186/s12967-016-0996-4 |
[27] |
Ao S, Sun XY, Shi XR, et al. Longitudinal investigation of salivary proteomic profiles in the development of early childhood caries[J]. J Dent, 2017, 61: 21-27.
doi: 10.1016/j.jdent.2017.04.006 |
[28] |
Shimotoyodome A, Kobayashi H, Tokimitsu I, et al. Statherin and histatin 1 reduce parotid saliva-promoted Streptococcus mutans strain MT8148 adhesion to hydroxyapatite surfaces[J]. Caries Res, 2006, 40(5): 403-411.
pmid: 16946609 |
[29] | 李远贵, 石四箴. 儿童唾液富酪蛋白与患龋状况的分析研究[J]. 口腔医学研究, 2009, 25(6): 778-780. |
Li YG, Shi SZ. Analysis of the salivary statherin in caries-free and caries-susceptible children[J]. J Oral Sci Res, 2009, 25(6): 778-780. | |
[30] | 陈敏, 刘海霞. 高分子量唾液粘蛋白含量与乳牙患龋相关性研究[J]. 中国美容医学, 2014, 23(4): 322-324. |
Chen M, Liu HX. High molecular weight salivary mucin content and deciduous teeth caries correlation studies correlation of high-molecular-weight salivary mucin content and primary caries status[J]. Chin J Aesthetic Med, 2014, 23(4): 322-324. | |
[31] | 刘志云, 阙国鹰. 高分子量唾液粘蛋白含量与乳牙患龋相关性的研究[J]. 牙体牙髓牙周病学杂志, 2011, 21(9): 510-513. |
Liu ZY, Que GY. Correlation of high-molecular-weight salivary mucin content and primary caries status[J]. Chin J Conserv Dent, 2011, 21(9): 510-513. | |
[32] | 鄢国伟, 黄文明, 薛红蕾, 等. 6~8岁儿童龋病相关唾液蛋白组的电喷雾离子肼—串联质谱分析[J]. 华西口腔医学杂志, 2014, 32(3): 297-302. |
Yan GW, Huang WM, Xue HL, et al. Relationship between dental caries and salivary proteome by electrospray ionization ion-trap tandem mass spectrometry in children aged 6 to 8 years[J]. West China J Stomatol, 2014, 32(3): 297-302. | |
[33] |
Angwaravong O, Pitiphat W, Bolscher JG, et al. Evaluation of salivary mucins in children with deciduous and mixed dentition: comparative analysis between high and low caries-risk groups[J]. Clin Oral Investig, 2015, 19(8): 1931-1937.
doi: 10.1007/s00784-015-1428-1 |
[34] |
Lynge Pedersen AM, Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota[J]. J Dent, 2019, 80(Suppl 1): S3-S12.
doi: 10.1016/j.jdent.2018.08.010 |
[35] |
Moslemi M, Sattari M, Kooshki F, et al. Relationship of salivary lactoferrin and lysozyme concentrations with early childhood caries[J]. J Dent Res Dent Clin Dent Prospects, 2015, 9(2): 109-114.
doi: 10.15171/joddd.2015.022 |
[36] | 郝高峰, 林焕彩. 唾液乳铁蛋白和溶菌酶含量与乳牙患龋的关系[J]. 中华口腔医学杂志, 2009, 44(2): 82-84. |
Hao GF, Lin HC. Relationship of concentration of lactoferrin and lysozyme in saliva and dental caries in primary dentition[J]. Chin J Stomatol, 2009, 44(2): 82-84. | |
[37] |
Rajkumaar J, Mathew MG. Association of severe early childhood caries with salivary ferritin[J]. J Family Med Prim Care, 2020, 9(8): 3991-3993.
doi: 10.4103/jfmpc.jfmpc_9_20 |
[38] |
Subramaniam P, Sharma A, Moiden S. Analysis of salivary IgA, amylase, lactoferrin, and lysozyme before and after comprehensive dental treatment in children: a prospective study[J]. Contemp Clin Dent, 2017, 8(4): 526.
doi: 10.4103/ccd.ccd_103_17 |
[39] |
Abbasoğlu Z, Tanboğa İ, Calvano Küchler E, et al. Early childhood caries is associated with genetic variants in enamel formation and immune response genes[J]. Caries Res, 2015, 49(1): 70-77.
doi: 10.1159/000362825 pmid: 25531160 |
[40] |
Wang MC, Qin M. Lack of association between LTF gene polymorphisms and different caries status in primary dentition[J]. Oral Dis, 2018, 24(8): 1545-1553.
doi: 10.1111/odi.2018.24.issue-8 |
[41] |
Wang K, Zhou XD, Li W, et al. Human salivary proteins and their peptidomimetics: values of function, early diagnosis, and therapeutic potential in combating dental caries[J]. Arch Oral Biol, 2019, 99: 31-42.
doi: S0003-9969(18)30664-2 pmid: 30599395 |
[42] | 白洁, 周琼, 包振英, 等. 有龋和无龋儿童四种唾液蛋白成分的比较[J]. 中华口腔医学杂志, 2007, 42(1): 21-23. |
Bai J, Zhou Q, Bao ZY, et al. Comparison of salivary proteins between children with early childhood caries and children without caries[J]. Chin J Stomatol, 2007, 42(1): 21-23. | |
[43] |
Lertsirivorakul J, Petsongkram B, Chaiyarit P, et al. Salivary lysozyme in relation to dental caries among Thai preschoolers[J]. J Clin Pediatr Dent, 2015, 39(4): 343-347.
doi: 10.17796/1053-4628-39.4.343 pmid: 26161606 |
[44] |
Hatipoglu O, Saydam F. Effects of the carbonic anhydrase Ⅵ gene polymorphisms on dental caries: a meta-analysis[J]. Dent Med Probl, 2019, 56(4): 395-400.
doi: 10.17219/dmp/110453 |
[45] |
de-Sousa ET, Lima-Holanda AT, Nobre-Dos-santos M. Carbonic anhydrase Ⅵ activity in saliva and biofilm can predict early childhood caries: a preliminary study[J]. Int J Paediatr Dent, 2021, 31(3): 361-371.
doi: 10.1111/ipd.v31.3 |
[46] | 侯雯, 苏达, 阙国鹰. 碳酸酐酶Ⅵ与4~5岁儿童龋病相关性的研究[J]. 口腔医学研究, 2018, 34(4): 363-366. |
Hou W, Su D, Que GY. Correlation between carbonic anhydraseⅥ level and dental caries among children aged 4-5 years[J]. J Oral Sci Res, 2018, 34(4): 363-366. | |
[47] | 李静雅, 黄洋. 基质金属蛋白酶在龋病中的研究进展[J]. 口腔医学研究, 2019, 35(12): 1122-1124. |
Li JY, Huang Y. Research progress of matrix metalloproteinases in caries[J]. J Oral Sci Res, 2019, 35(12): 1122-1124. | |
[48] | 王潇, 王欣, 秦满. 唾液基质金属蛋白酶2、9与儿童龋病相关性的初步研究[J]. 北京大学学报(医学版), 2018, 50(3): 527-531. |
Wang X, Wang X, Qin M. A preliminary study of saliva matrix metalloproteinases (MMP-2 and MMP-9) in children with caries[J]. J Peking Univ (Heal Sci), 2018, 50(3): 527-531. | |
[49] |
Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A[J]. Microbiol Mol Biol Rev, 1998, 62(1): 71-109.
doi: 10.1128/MMBR.62.1.71-109.1998 |
[50] |
Bagherian A, Jafarzadeh A, Rezaeian M, et al. Comparison of the salivary immunoglobulin concentration levels between children with early childhood caries and caries-free children[J]. Iran J Immunol, 2008, 5(4): 217-221.
doi: IJIv5i4A5 pmid: 19098366 |
[51] |
Bagherian A, Asadikaram G, Asadikaram G. Comparison of some salivary characteristics between children with and without early childhood caries[J]. Indian J Dent Res, 2012, 23(5): 628-632.
doi: 10.4103/0970-9290.107380 |
[52] | 翟韶. 解析高龋儿童全唾液免疫生化与龋病相关性的研究[J]. 中国实用医药, 2015, 10(1): 100-101. |
Zhai S. Analyze the study of the correlation between whole saliva immunobiochemistry and caries in children with high caries[J]. China Pract Med, 2015, 10(1): 100-101. | |
[53] | 张玉杰, 赵晓军, 赵丽, 等. 318例牙龋病患儿口腔幽门螺旋杆菌感染、唾液口腔pH改变的临床分析[J]. 空军医学杂志, 2017, 33(5): 326-329. |
Zhang YJ, Zhao XJ, Zhao L, et al. Clinical analysis of oral Helicobacter pylori infections and changes of oral salivary pH in 318 children with caries[J]. Med J Air Force, 2017, 33(5): 326-329. | |
[54] | 徐月桦, 叶娟, 胡镜清, 等. 唾液免疫球蛋白与疾病[J]. 中国免疫学杂志, 2015, 31(8): 1120-1123. |
Xu YH, Ye J, Hu JQ, et al. Saliva immunoglobulin and disease[J]. Chin J Immunol, 2015, 31(8): 1120-1123. | |
[55] | 沈磊. 唾液中SIgA、IgA蛋白酶与儿童龋病关系的研究[D]. 沈阳: 中国医科大学, 2000. |
Shen L. Study on the relationship between SIgA and IgA proteases in saliva and childhood caries[D]. Shenyang: China Medical University, 2000. | |
[56] |
Smith DJ, King WF, Gilbert JV, et al. Structural integrity of infant salivary immunoglobulin A (IgA) in IgA1 protease-rich environments[J]. Oral Microbiol Immunol, 1998, 13(2): 89-96.
doi: 10.1111/omi.1998.13.issue-2 |
[57] |
Yang Y, Li YH, Lin YH, et al. Comparison of immunological and microbiological characteristics in children and the elderly with or without dental caries[J]. Eur J Oral Sci, 2015, 123(2): 80-87.
doi: 10.1111/eos.2015.123.issue-2 |
[58] |
Colombo NH, Pereira JA, da Silva ME, et al. Relationship between the IgA antibody response against Streptococcus mutans GbpB and severity of dental caries in childhood[J]. Arch Oral Biol, 2016, 67: 22-27.
doi: 10.1016/j.archoralbio.2016.03.006 |
[59] | Cao XX, Fan J, Chen J, et al. Immunogenicity and prediction of epitopic region of antigen AgⅠ/Ⅱ and glucosyltransferase from Streptococcus mutans[J]. 2016, 36(3): 416-421. |
[60] |
de Farias DG, Bezerra AC. Salivary antibodies, amylase and protein from children with early childhood caries[J]. Clin Oral Investig, 2003, 7(3): 154-157.
doi: 10.1007/s00784-003-0222-7 |
[61] | Pyati SA, Naveen Kumar R, Kumar V, et al. Salivary flow rate, pH, buffering capacity, total protein, oxidative stress and antioxidant capacity in children with and without dental caries[J]. J Clin Pediatr Dent, 2018, 42(6): 445-449. |
[62] | 王艳, 李存荣, 曾晓莉, 等. 6~7岁无龋与龋活跃儿童唾液糖蛋白水平的比较研究[J]. 上海交通大学学报(医学版), 2016, 36(6): 835-838. |
Wang Y, Li CR, Zeng XL, et al. Comparative study on the level of salivary glycoproteins in 6-7 years old caries free and caries active children[J]. J Shanghai Jiaotong Univ (Med Sci), 2016, 36(6): 835-838. |
[1] | Yang Qianjuan,Song Zhixin,Fang Shishu,Gu Zexu,Jin Zuolin,Liu Qian. New advances in oral diseases based on salivary metabolomics [J]. Int J Stomatol, 2023, 50(3): 321-328. |
[2] | Gao Ruofan,Xia Bin.. Severe early childhood caries management based on chronic disease management [J]. Int J Stomatol, 2023, 50(3): 341-346. |
[3] | Yu Shuxing,Zou Jing,Li Yuqing. Advances in saliva-based detection of viral infectious biomarkers [J]. Int J Stomatol, 2022, 49(2): 189-196. |
[4] | Deng Xiaoyu,Zhang Yunhan,Zou Jing. Early biological management of early childhood caries [J]. Int J Stomatol, 2020, 47(5): 581-588. |
[5] | Wang Chunyan, Zhang Kun, Jiang Songlei. Research progress on polylactic acid post for the repairment of residual crown and root in deciduous teeth [J]. Inter J Stomatol, 2018, 45(1): 74-77. |
[6] | Zheng Liwei1, Zou Jing1, Xia Bin2, Liu Yingqun3, Huang Yang4, Zhao Jin5. Restoration of preformed metal crown on dental caries of primary molars [J]. Inter J Stomatol, 2017, 44(2): 125-129. |
[7] | Zou Jing1, Qin Man2, Wang Jun3, Huang Hua4, Lin Juhong5, Zhou Xuedong1.. Common dental diseases in children and malocclusion [J]. Inter J Stomatol, 2016, 43(6): 619-623. |
[8] | Huang Hui, Zhang Qiong, Zou Jing. Research progress on oral microbiota of early childhood caries [J]. Inter J Stomatol, 2016, 43(3): 295-297. |
[9] | Tao Chuansibo, Mei Fang, Zhong Jinsheng.. Innate immune effect and its expression level in oral tissues of follicular dendritic cells secreted protein [J]. Inter J Stomatol, 2014, 41(4): 444-447. |
[10] | Yang Xiaoqiong1, Zou Jing2.. Researches of oral microbiota associated with early-childhood caries [J]. Inter J Stomatol, 2011, 38(4): 455-459. |
[11] | QIU Rong-min, ZHAO Wei. Impact of the mother on early childhood caries [J]. Inter J Stomatol, 2010, 37(3): 341-341~343,347. |