Int J Stomatol ›› 2020, Vol. 47 ›› Issue (5): 506-514.doi: 10.7518/gjkq.2020032
• Oral Microecology • Previous Articles Next Articles
CLC Number:
[1] |
Global Burden of Disease Study Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015,386(9995):743-800.
pmid: 26063472 |
[2] | Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1 160 sequelae of 289 diseases and injuries 1990-2010: a systematic ana-lysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012,380(9859):2163-2196. |
[3] | 王兴. 第四次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2018. |
Wang X. Report of the fourth national oral health epidemiological survey[M]. Beijing: People’s Medi-cal Publishing House, 2018. | |
[4] |
Takahashi N, Nyvad B. Ecological hypojournal of dentin and root caries[J]. Caries Res, 2016,50(4):422-431.
doi: 10.1159/000447309 pmid: 27458979 |
[5] |
Burne RA, Zeng L, Ahn SJ, et al. Progress dissecting the oral microbiome in caries and health[J]. Adv Dent Res, 2012,24(2):77-80.
pmid: 22899685 |
[6] | 樊明文. 牙体牙髓病学[M]. 4版. 北京: 人民卫生出版社, 2012: 38-40. |
Fan MW. Operative dentistry and endodontics[M]. 4th ed. Beijing: People’s Medical Publishing House, 2012: 38-40. | |
[7] | Alcaraz LD, Belda-Ferre P, Cabrera-Rubio R, et al. Identifying a healthy oral microbiome through meta-genomics[J]. Clin Microbiol Infect, 2012,18(Suppl 4):54-57. |
[8] |
Xu P, Gunsolley J. Application of metagenomics in understanding oral health and disease[J]. Virulence, 2014,5(3):424-432.
doi: 10.4161/viru.28532 |
[9] | Karpinski TM, Szkaradkiewicz AK. Microbiology of dental caries[J]. J Biol Earth Sci, 2013,3(1):M21-M24. |
[10] |
Burczynska A, Dziewit L, Decewicz P, et al. App-lication of metagenomic analyses in dentistry as a novel strategy enabling complex insight into micro-bial diversity of the oral cavity[J]. Pol J Microbiol, 2017,66(1):9-15.
pmid: 29359689 |
[11] |
Aas JA, Griffen AL, Dardis SR, et al. Bacteria of dental caries in primary and permanent teeth in chil-dren and young adults[J]. J Clin Microbiol, 2008,46(4):1407-1417.
pmid: 18216213 |
[12] | Rosier BT, De Jager M, Zaura E, et al. Historical and contemporary hypotheses on the development of oral diseases: are we there yet[J]. Front Cell Infect Mi-crobiol, 2014,4:92. |
[13] |
Marsh PD. Are dental diseases examples of ecolo-gical catastrophes[J]. Microbiology (Reading, Engl), 2003,149(Pt 2):279-294.
doi: 10.1099/mic.0.26082-0 |
[14] |
Astorga B, Barraza C, Casals JM, et al. Avances en El estudio de la diversidad bacteriana oral asociada a caries dental mediante El estudio genómico[J]. Int J Odontostomat, 2015,9(3):349-356.
doi: 10.4067/S0718-381X2015000300002 |
[15] |
Jiang W, Zhang J, Chen H. Pyrosequencing analysis of oral microbiota in children with severe early child-hood dental caries[J]. Curr Microbiol, 2013,67(5):537-542.
doi: 10.1007/s00284-013-0393-7 |
[16] |
Wade WG. The oral microbiome in health and dis-ease[J]. Pharmacol Res, 2013,69(1):137-143.
pmid: 23201354 |
[17] |
Rosier BT, Marsh PD, Mira A. Resilience of the oral microbiota in health: mechanisms that prevent dys-biosis[J]. J Dent Res, 2018,97(4):371-380.
pmid: 29195050 |
[18] |
Kilian M, Chapple IL, Hannig M, et al. The oral microbiome—an update for oral healthcare profes-sionals[J]. Br Dent J, 2016,221(10):657-666.
doi: 10.1038/sj.bdj.2016.865 pmid: 27857087 |
[19] |
Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease[J]. Microbes Infect, 2015,17(7):505-516.
doi: 10.1016/j.micinf.2015.03.014 pmid: 25862077 |
[20] |
Xu X, He JZ, Xue J, et al. Oral cavity contains distinct niches with dynamic microbial communities[J]. Environ Microbiol, 2015,17(3):699-710.
doi: 10.1111/1462-2920.12502 pmid: 24800728 |
[21] | Al-Hebshi NN, Baraniya D, Chen T, et al. Metage-nome sequencing-based strain-level and functional characterization of supragingival microbiome as-sociated with dental caries in children[J]. J Oral Mic-robiol, 2019,11(1):1557986. |
[22] |
Xu Y, Jia YH, Chen L, et al. Metagenomic analysis of oral microbiome in young children aged 6-8 years living in a rural isolated Chinese Province[J]. Oral Dis, 2018,24(6):1115-1125.
doi: 10.1111/odi.12871 pmid: 29667264 |
[23] |
ohansson I, Witkowska E, Kaveh B, et al. The micro-biome in populations with a low and high prevalence of caries[J]. J Dent Res, 2016,95(1):80-86.
pmid: 26442950 |
[24] | 霍媛媛, 韩轩, 李雨庆, 等. 龋病相关微生物群落结构与功能的多组学研究进展[J]. 口腔疾病防治, 2018,26(3):195-199. |
Huo YY, Han X, Li YQ , et al. A multiomics approach to study the associations between microbial com-munities and functions and dental caries[J]. J Dent Prev Treat, 2018,26(3):195-199. | |
[25] | 石四箴. 儿童口腔医学[M]. 4版. 北京: 人民卫生出版社, 2011: 112-113. |
Shi SJ. Pediatric stomatology[M]. 4th ed. Beijing: People’s Medical Publishing House, 2011: 112-113. | |
[26] |
Ling ZX, Kong JM, Jia P, et al. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing[J]. Microb Ecol, 2010,60(3):677-690.
doi: 10.1007/s00248-010-9712-8 pmid: 20614117 |
[27] |
Teng F, Yang F, Huang S, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota[J]. Cell Host Microbe, 2015,18(3):296-306.
doi: 10.1016/j.chom.2015.08.005 pmid: 26355216 |
[28] |
Ma C, Chen F, Zhang YF, et al. Comparison of oral microbial profiles between children with severe early childhood caries and caries-free children using the human oral microbe identification microarray[J]. PLoS One, 2015,10(3):e0122075.
doi: 10.1371/journal.pone.0122075 pmid: 25821962 |
[29] |
Tanner AC, Kent RL Jr, Holgerson PL, et al. Microbiota of severe early childhood caries before and after therapy[J]. J Dent Res, 2011,90(11):1298-1305.
doi: 10.1177/0022034511421201 |
[30] |
Xu H, Tian J, Hao WJ, et al. Oral microbiome shifts from caries-free to caries-affected status in 3-year-old Chinese children: a longitudinal study[J]. Front Microbiol, 2018,9:2009.
doi: 10.3389/fmicb.2018.02009 pmid: 30210479 |
[31] |
Dzidic M, Collado MC, Abrahamsson T, et al. Oral microbiome development during childhood: an eco-logical succession influenced by postnatal factors and associated with tooth decay[J]. ISME J, 2018,12(9):2292-2306.
doi: 10.1038/s41396-018-0204-z pmid: 29899505 |
[32] |
Li F, Tao DY, Feng XP, et al. Establishment and development of oral microflora in 12-24 month-old toddlers monitored by high-throughput sequencing[J]. Front Cell Infect Microbiol, 2018,8:422.
pmid: 30564560 |
[33] |
Luo AH, Yang DQ, Xin BC, et al. Microbial profiles in saliva from children with and without caries in mixed dentition[J]. Oral Dis, 2012,18(6):595-601.
doi: 10.1111/j.1601-0825.2012.01915.x |
[34] |
Munson MA, Banerjee A, Watson TF, et al. Molecular analysis of the microflora associated with dental caries[J]. J Clin Microbiol, 2004,42(7):3023-3029.
doi: 10.1128/JCM.42.7.3023-3029.2004 pmid: 15243054 |
[35] |
Chhour KL, Nadkarni MA, Byun R, et al. Molecular analysis of microbial diversity in advanced caries[J]. J Clin Microbiol, 2005,43(2):843-849.
doi: 10.1128/JCM.43.2.843-849.2005 pmid: 15695690 |
[36] |
He JZ, Tu QC, Ge YC, et al. Taxonomic and func-tional analyses of the supragingival microbiome from caries-affected and caries-free hosts[J]. Microb Ecol, 2018,75(2):543-554.
doi: 10.1007/s00248-017-1056-1 pmid: 28932895 |
[37] |
Xiao CC, Ran SJ, Huang ZW, et al. Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16S pyrosequencing[J]. Front Microbiol, 2016,7:1145.
doi: 10.3389/fmicb.2016.01145 pmid: 27499752 |
[38] |
Papaioannou W, Gizani S, Haffajee AD, et al. The microbiota on different oral surfaces in healthy chil-dren[J]. Oral Microbiol Immunol, 2009,24(3):183-189.
doi: 10.1111/omi.2009.24.issue-3 |
[39] |
Li Y, Ku CY, Xu J, et al. Survey of oral microbial diversity using PCR-based denaturing gradient gel electrophoresis[J]. J Dent Res, 2005,84(6):559-564.
doi: 10.1177/154405910508400614 pmid: 15914595 |
[40] |
Simón-Soro A, Belda-Ferre P, Cabrera-Rubio R, et al. A tissue-dependent hypojournal of dental caries[J]. Caries Res, 2013,47(6):591-600.
doi: 10.1159/000351663 |
[41] |
Gross EL, Beall CJ, Kutsch SR, et al. Beyond Strep-tococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis[J]. PLoS One, 2012,7(10):e47722.
doi: 10.1371/journal.pone.0047722 pmid: 23091642 |
[42] |
Kianoush N, Adler CJ, Nguyen KA, et al. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity[J]. PLoS One, 2014,9(3):e92940.
doi: 10.1371/journal.pone.0092940 pmid: 24675997 |
[43] |
Jiang Q, Liu J, Chen L, et al. The oral microbiome in the elderly with dental caries and health[J]. Front Cell Infect Microbiol, 2018,8:442.
doi: 10.3389/fcimb.2018.00442 pmid: 30662876 |
[44] |
Preza D, Olsen I, Aas JA, et al. Bacterial profiles of root caries in elderly patients[J]. J Clin Microbiol, 2008,46(6):2015-2021.
doi: 10.1128/JCM.02411-07 pmid: 18385433 |
[45] |
Chen L, Qin BC, Du MQ, et al. Extensive description and comparison of human supra-gingival microbiome in root caries and health[J]. PLoS One, 2015,10(2):e0117064.
doi: 10.1371/journal.pone.0117064 pmid: 25658087 |
[46] |
Tao Y, Zhou Y, Ouyang Y, et al. Dynamics of oral microbial community profiling during severe early childhood caries development monitored by PCR-DGGE[J]. Arch Oral Biol, 2013,58(9):1129-1138.
doi: 10.1016/j.archoralbio.2013.04.005 pmid: 23664249 |
[47] |
Gross EL, Leys EJ, Gasparovich SR, et al. Bacterial 16S sequence analysis of severe caries in young per-manent teeth[J]. J Clin Microbiol, 2010,48(11):4121-4128.
doi: 10.1128/JCM.01232-10 pmid: 20826648 |
[48] |
Jiang W, Ling ZX, Lin XL, et al. Pyrosequencing analysis of oral microbiota shifting in various caries states in childhood[J]. Microb Ecol, 2014,67(4):962-969.
doi: 10.1007/s00248-014-0372-y pmid: 24504329 |
[49] | 陈婧, 程磊, 周学东, 等. 龋病微生物因素研究进展[J]. 华西口腔医学杂志, 2018,36(1):104-108. |
Chen J, Cheng L, Zhou XD , et al. Recent achieve-ments in the microbiological etiology of dental caries[J]. West China J Stomatol, 2018,36(1):104-108. | |
[50] |
Tanner ACR, Kressirer CA, Rothmiller S, et al. The caries microbiome: implications for reversing dys-biosis[J]. Adv Dent Res, 2018,29(1):78-85.
doi: 10.1177/0022034517736496 pmid: 29355414 |
[51] |
Simón-Soro A, Mira A. Solving the etiology of dental caries[J]. Trends Microbiol, 2015,23(2):76-82.
pmid: 25435135 |
[52] |
Conrads G, About I. Pathophysiology of dental caries[J]. Monogr Oral Sci, 2018,27:1-10.
doi: 10.1159/000487826 pmid: 29794423 |
[53] |
Jorth P, Turner KH, Gumus P, et al. Metatranscriptomics of the human oral microbiome during health and disease[J]. MBio, 2014,5(2):e01012-e01014.
pmid: 24692635 |
[54] |
Xiao J, Klein MI, Falsetta ML, et al. The exopoly-saccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm[J]. PLoS Pathog, 2012,8(4):e1002623.
doi: 10.1371/journal.ppat.1002623 pmid: 22496649 |
[55] |
Reyes E, Martin J, Moncada G, et al. Caries-free subjects have high levels of urease and arginine deiminase activity[J]. J Appl Oral Sci, 2014,22(3):235-240.
doi: 10.1590/1678-775720130591 pmid: 25025565 |
[56] |
Burne RA. Getting to know “the known unknowns”: heterogeneity in the oral microbiome[J]. Adv Dent Res, 2018,29(1):66-70.
doi: 10.1177/0022034517735293 pmid: 29355408 |
[57] |
Kuramitsu HK, He XS, Lux R, et al. Interspecies interactions within oral microbial communities[J]. Microbiol Mol Biol Rev, 2007,71(4):653-670.
doi: 10.1128/MMBR.00024-07 pmid: 18063722 |
[58] |
Marsh PD. In sickness and in health-what does the oral microbiome mean to us? An ecological perspe-ctive[J]. Adv Dent Res, 2018,29(1):60-65.
doi: 10.1177/0022034517735295 pmid: 29355410 |
[59] |
Pitts NB, Zero DT, Marsh PD, et al. Dental caries[J]. Nat Rev Dis Primers, 2017,3:17030.
pmid: 28540937 |
[60] | Murray JL, Connell JL, Stacy A, et al. Mechanisms of synergy in polymicrobial infections[J]. J Micro-biol, 2014,52(3):188-199. |
[61] |
Peterson SN, Meissner T, Su AI, et al. Functional expression of dental plaque microbiota[J]. Front Cell Infect Microbiol, 2014,4:108.
doi: 10.3389/fcimb.2014.00108 pmid: 25177549 |
[62] |
Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, et al. The oral metagenome in health and disease[J]. ISME J, 2012,6(1):46-56.
doi: 10.1038/ismej.2011.85 |
[63] |
Takahashi N, Washio J, Mayanagi G. Metabolomics of supragingival plaque and oral bacteria[J]. J Dent Res, 2010,89(12):1383-1388.
doi: 10.1177/0022034510377792 pmid: 20924070 |
[64] |
Espinoza JL, Harkins DM, Torralba M, et al. Supra-gingival plaque microbiome ecology and functional potential in the context of health and disease[J]. MBio, 2018,9(6):e01631-e01618.
doi: 10.1128/mBio.01631-18 pmid: 30482830 |
[65] |
Ghadimi E, Eimar H, Marelli B, et al. Trace elements can influence the physical properties of tooth enamel[J]. Springerplus, 2013,2:499.
doi: 10.1186/2193-1801-2-499 pmid: 24133648 |
[66] |
He MY, Lu H, Luo CG, et al. Determining trace metal elements in the tooth enamel from Hui and Han Ethnic groups in China using microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS)[J]. Microchem J, 2016,127:142-144.
doi: 10.1016/j.microc.2016.02.009 |
[67] | 刘涛, 吕一品, 姚辰琛, 等. 口腔微生态的研究进展[J]. 生命科学研究, 2012,16(5):466-470. |
Liu T, Lü YP, Yao CC , et al. Progresses on oral mi-croecology[J]. Life Sci Res, 2012,16(5):466-470. | |
[68] |
Samaranayake L, Matsubara VH. Normal oral flora and the oral ecosystem[J]. Dent Clin North Am, 2017,61(2):199-215.
doi: 10.1016/j.cden.2016.11.002 pmid: 28317562 |
[69] |
Bradshaw DJ, Marsh PD. Analysis of pH-driven disruption of oral microbial communities in vitro[J]. Caries Res, 1998,32(6):456-462.
pmid: 9745120 |
[70] |
He JZ, Li Y, Cao YP, et al. The oral microbiome diversity and its relation to human diseases[J]. Folia Microbiol (Praha), 2015,60(1):69-80.
doi: 10.1007/s12223-014-0342-2 |
[71] | 马守治, 程辉, 闫福华. 口腔修复材料对细菌在其表面粘附和生长的影响[J]. 国外医学口腔医学分册, 2005,32(5):373-374. |
Ma SZ, Cheng H, Yan FH . Effect of dental prosthetic materials on bacterial adhesion and growth on its surface[J]. Foreign Med Sci (Dent Med Branch), 2005,32(5):373-374. | |
[72] |
Oktyabrskii ON, Smirnova GV. Redox potential changes in bacterial cultures under stress conditions[J]. Microbiology, 2012,81(2):131-142.
doi: 10.1134/S0026261712020099 |
[1] | Gong Tao,Li Yuqing,Zhou Xuedong.. Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans [J]. Int J Stomatol, 2022, 49(5): 506-510. |
[2] | Zhu Jinyi,Fan Qi,Zhou Yuan,Zou Jing,Huang Ruijie. Research progress of salivary proteins as predictive biomarkers for early childhood caries [J]. Int J Stomatol, 2022, 49(2): 212-219. |
[3] | Liu Chengcheng, Ding Yi. Clinical diagnosis, treatment, and management strategies of common oral infectious disease during pregnancy [J]. Int J Stomatol, 2021, 48(6): 621-628. |
[4] | Fan Yu,Cheng Lei. Smoking affects the oral microenvironment and its role in the progression of dental caries [J]. Int J Stomatol, 2021, 48(5): 609-613. |
[5] | Qing Wei,Huang Lijuan,Zheng Jiajun,Ren Jing,Li Chenglong,Tuo Qiang,Ren Xiaohua,Mu Yandong. Shift of microbial composition of peri-implant gingival crevicular fluid as revealed by 16S ribosomal DNA high-throughput sequencing [J]. Int J Stomatol, 2019, 46(5): 532-539. |
[6] | Wang Xiaobo,Lin Shiyao,Li Xia. Research progress on the relationship between mother and childhood dental caries [J]. Int J Stomatol, 2019, 46(4): 469-474. |
[7] | Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552. |
[8] | Ding Jie, Song Guangtai.. Clinical application of minimally invasive techniques in the management of children’s dental caries [J]. Inter J Stomatol, 2018, 45(4): 473-479. |
[9] | Gao Xuebin, Zhang Qi, Li Jing, Bi Ye, Yang Hua, Huang Yang. A clinical study on the choice of etching agent for pit and fissure sealing in younger children [J]. Inter J Stomatol, 2017, 44(4): 433-436. |
[10] | Zheng Liwei1, Zou Jing1, Xia Bin2, Liu Yingqun3, Huang Yang4, Zhao Jin5. Restoration of preformed metal crown on dental caries of primary molars [J]. Inter J Stomatol, 2017, 44(2): 125-129. |
[11] | Wang Yuxia, Zhou Xuedong, Li Mingyun.. A review on the role of Veillonella in caries and its interaction with Streptococcus [J]. Inter J Stomatol, 2017, 44(2): 195-199. |
[12] | Feng Ruzhou, Liu Juan, Lü Changhai . Fluoride application for dental caries prevention and control in children and adolescents [J]. Inter J Stomatol, 2016, 43(1): 118-. |
[13] | Fang Li, Liu Yuan, Yang Ran, Zou Jing. Comparison of Streptococcus mutans in saliva before and after dental caries filling with resin-based composite [J]. Inter J Stomatol, 2015, 42(1): 28-30. |
[14] | Xu Pengcheng, Xu Xin, Zhou Xuedong. Calcium and phosphorus remineralization and its system [J]. Inter J Stomatol, 2014, 41(3): 347-350. |
[15] | Li Chang’e, Yu Danni.. Optical coherence tomography and its application in the diagnosis of oral diseases [J]. Inter J Stomatol, 2014, 41(1): 68-71. |