Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (5): 528-532.doi: 10.7518/gjkq.2017.05.007

• Periodontitis • Previous Articles     Next Articles

Research progress on the relationship between monocytes phagocyte system and periodontitis

Huang Yuehua1, 2, Tang Xiaolin1   

  1. 1. Dept. of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China;
    2. Dept. of Periodontology, The Hangzhou Stomatological Hospital, Hangzhou 310006, China
  • Received:2016-12-27 Revised:2017-05-18 Online:2017-09-01 Published:2017-09-01
  • Supported by:
    ; This study was supported by National Natural Science Foundation of China(81670999).

Abstract: The monocyte phagocytic system is an important member of host defense systems. This system plays a key role in immunological homeostasis, defense, and surveillance. Periodontitis is an inflammatory and destructive disease in periodontal support tissues. The monocyte phagocytic system plays an important role in development of periodontitis. This paper aims to review the relationship between monocyte phagocytic system and periodontitis.

Key words: mononuclear phagocyte system, monocyte, macrophage, periodontitis, immune response

CLC Number: 

  • R781.4+

TrendMD: 
[1] Chow A, Brown BD, Merad M. Studying the mon-onuclear phagocyte system in the molecular age[J]. Nat Rev Immunol, 2011, 11(11):788-798.
[2] Stansfield BK, Ingram DA. Clinical significance of monocyte heterogeneity[J]. Clin Transl Med, 2015, 4:5.
[3] Ziegler-Heitbrock L. The CD14 + CD16 + blood mo-nocytes: their role in infection and inflammation[J]. J Leukoc Biol, 2007, 81(3):584-592.
[4] Yang J, Zhang L, Yu C, et al. Monocyte and macro-phage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases[J]. Biomark Res, 2014, 2(1):1.
[5] Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migra-tory properties[J]. Immunity, 2003, 19(1):71-82.
[6] Kundu D, Bandyopadhyay P, Nair V, et al. Aggres-sive periodontitis: a clinico-hematological appraisal [J]. J Indian Soc Periodontol, 2014, 18(2):166-171.
[7] Nagasawa T, Kobayashi H, Aramaki M, et al. Expre-ssion of CD14, CD16 and CD45RA on monocytes from periodontitis patients[J]. J Periodontal Res, 2004, 39(1):72-78.
[8] Jagannathan R, Lavu V, Rao SR. Comparison of the proportion of non-classic (CD14 + CD16 + ) monocytes/macrophages in peripheral blood and gingiva of healthy individuals and patients with chronic perio-dontitis[J]. J Periodontol, 2014, 85(6):852-858.
[9] Papapanou PN, Sedaghatfar MH, Demmer RT, et al. Periodontal therapy alters gene expression of peri-pheral blood monocytes[J]. J Clin Periodontol, 2007, 34(9):736-747.
[10] Idzkowska E, Eljaszewicz A, Miklasz P, et al. The role of different monocyte subsets in the pathogene-sis of atherosclerosis and acute coronary syndromes [J]. Scand J Immunol, 2015, 82(3):163-173.
[11] Klimek E, Mikołajczyk T, Sulicka J, et al. Blood monocyte subsets and selected cardiovascular risk markers in rheumatoid arthritis of short duration in relation to disease activity[J]. Biomed Res Int, 2014, 2014:736853.
[12] Zhou X, Liu XL, Ji WJ, et al. The kinetics of circula-ting monocyte subsets and monocyte-platelet aggre-gates in the acute phase of ST-elevation myocardial infarction: associations with 2-year cardiovascular events[J]. Medicine(Baltimore), 2016, 95(18):e3466.
[13] 曹雪涛. 医学免疫学[M]. 6版. 北京: 人民卫生出版社, 2013:110.
Cao XT. Medical immunology[M]. 6th ed. Beijing: People’ Medical Publishing House, 2013:110.
[14] 史秀娣, 马红梅. 口腔生物材料对机体巨噬细胞生物学行为影响研究进展[J]. 中国实用口腔科杂志, 2016, 9(12):756-760.
Shi XD, Ma HM. Effects of oral biomaterials on biological behavior of macrophages[J]. Chin J Pract Stomatol, 2016, 9(12):756-760.
[15] Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and expe-rimental guidelines[J]. Immunity, 2014, 41(1):14-20.
[16] Mantovani A, Sica A, Sozzani S, et al. The chemo-kine system in diverse forms of macrophage activa-tion and polarization[J]. Trends Immunol, 2004, 25 (12):677-686.
[17] Mosser DM, Edwards JP. Exploring the full spec-trum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12):958-969.
[18] Xu J, Zhang H, Chen L, et al. Schistosoma japonicum infection induces macrophage polarization[J]. J Bio-med Res, 2014, 28(4):299-308.
[19] Edin S, Wikberg ML, Dahlin AM, et al. The distri-bution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular charac-teristics of colorectal cancer[J]. PLoS One, 2012, 7 (10):e47045.
[20] Gemmell E, McHugh GB, Grieco DA, et al. Cos-timulatory molecules in human periodontal disease tissues[J]. J Periodontal Res, 2001, 36(2):92-100.
[21] 冯利, 冯洁, 王春华, 等. 牙周炎龈组织中巨噬细胞超微结构的观察[J]. 四川大学学报(自然科学版), 2002, 39(S1):90-92.
Feng L, Feng J, Wang CH, et al. Ultrastructural ob-servation of macrophages in gingival tissue of perio-dontitis[J]. J Sichuan Univ(Natur Sci Ed), 2002, 39 (S1):90-92.
[22] Lam RS, O'Brien-Simpson NM, Lenzo JC, et al. Macrophage depletion abates Porphyromonas gin-givalis -induced alveolar bone resorption in mice[J]. J Immunol, 2014, 193(5):2349-2362.
[23] Holden JA, Attard TJ, Laughton KM, et al. Por - phyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines[J]. Infect Immun, 2014, 82(10):4190-4203.
[24] Navarrete M, García J, Dutzan N, et al. Interferon-γ, interleukins-6 and -4, and factor ⅩⅢ-A as indirect markers of the classical and alternative macrophage activation pathways in chronic periodontitis[J]. J Periodontol, 2014, 85(5):751-760.
[25] Gonzalez OA, Novak MJ, Kirakodu S, et al. Diffe-rential gene expression profiles reflecting macro-phage polarization in aging and periodontitis gingival tissues[J]. Immunol Invest, 2015, 44(7):643-664.
[26] Xuan D, Han Q, Tu Q, et al. Epigenetic modulation in periodontitis: interaction of adiponectin and JMJD3-IRF4 Axis in macrophages[J]. J Cell Physiol, 2015, 231(5):1090-1096.
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[3] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[4] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[5] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[6] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[7] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[8] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[9] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[10] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[11] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[12] Cheng Yifan,Qin Xu,Jiang Ming,Zhu Guang-xun.. Research progress on innate lymphoid cells in periodontal diseases [J]. Int J Stomatol, 2023, 50(1): 32-36.
[13] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[14] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
[15] Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .