Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (5): 533-537.doi: 10.7518/gjkq.2017.05.008

• Periodontitis • Previous Articles     Next Articles

The role of macrophages polarization in the onset and development of periodontitis via Porphyromonas gingivalis

Pan Jiahui, Tang Qiuling, Li Gege, Hou Yubo, Yu Weixian   

  1. Dept. of Periodontology, Hospital of Stomatology, Jilin University;Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
  • Received:2016-12-16 Revised:2017-06-09 Online:2017-09-01 Published:2017-09-01
  • Supported by:

    ; This study was supported by Funding from the Jilin Provincial Science and Technology Department(20150101076JC) and Development and Reform Commission Scientific Foundation of Jilin Province(2013C022-4).

Abstract:

Porphyromonas gingivalis is the main pathogen causing periodontitis. Once invaded by Porphyromonas gingivalis, periodontal tissues become infiltrated by large amounts of inflammatory cells and undergo inflammation as macrophages polarize. Macrophages are characterized by considerable plasticity and can be divided into distinct functional cell phenotypes in different microenvironments. Polarized macrophages are essential for the onset and development of periodontitis. They can release a large number of inflammatory factors to damage periodontal tissues and produce some bactericidal substances to inhibit and kill pathogenic microbes. This review presents the role of macrophage polarization in the onset and development of periodontitis.

Key words: Prophyromonas gingivalis, macrophage, polarization, periodontitis

CLC Number: 

  • R781.4+2

TrendMD: 
[1] Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Im-munol, 2011, 11(11):723-737.
[2] Jagannathan R, Lavu V, Rao SR. Comparison of the proportion of non-classic (CD14+CD16+) mono-cytes/macrophages in peripheral blood and gingiva of healthy individuals and patients with chronic perio-dontitis[J]. J Periodontol, 2014, 85(6):852-858.
[3] Gemmell E, McHugh GB, Grieco DA, et al. Costimu-latory molecules in human periodontal disease tissues [J]. J Periodontal Res, 2001, 36(2):92-100.
[4] Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions[J]. Immunity, 2010, 32(5):593-604.
[5] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity[J]. Nat Rev Immunol, 2011, 11(11):750-761.
[6] Mège JL, Mehraj V, Capo C. Macrophage polariza-tion and bacterial infections[J]. Curr Opin Infect Dis, 2011, 24(3):230-234.
[7] Hussain QA, McKay IJ, Gonzales-Marin C, et al. Detection of adrenomedullin and nitric oxide in dif-ferent forms of periodontal disease[J]. J Periodontal Res, 2016, 51(1):16-25.
[8] Mylonas KJ, Jenkins SJ, Castellan RF, et al. The adult murine heart has a sparse, phagocytically active macrophage population that expands through mono-cyte recruitment and adopts an ‘M2’ phenotype in response to Th2 immunologic challenge[J]. Immuno-biology, 2015, 220(7):924-933.
[9] Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds[J]. Biomaterials, 2015, 37:194-207.
[10] Lam RS, O'Brien-Simpson NM, Lenzo JC, et al. Ma-crophage depletion abates Porphyromonas gingivalis - induced alveolar bone resorption in mice[J]. J Immunol, 2014, 193(5):2349-2362.
[11] Hajishengallis G, Darveau RP, Curtis MA. The keys-tone-pathogen hypothesis[J]. Nat Rev Microbiol, 2012, 10(10):717-725.
[12] Holden JA, Attard TJ, Laughton KM, et al. Porphyro - monas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but in-duces inflammatory cytokines[J]. Infect Immun, 2014, 82(10):4190-4203.
[13] Mysak J, Podzimek S, Sommerova P, et al. Porphyro - monas gingivalis : major periodontopathic pathogen overview[J]. J Immunol Res, 2014, 163(3):234-243.
[14] Jain S, Coats SR, Chang AM, et al. A novel class of lipoprotein lipase-sensitive molecules mediates Toll-like receptor 2 activation by Porphyromonas gin-givalis [J]. Infect Immun, 2013, 81(4):1277-1286.
[15] Hajishengallis G. Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1):30-44.
[16] Aalaei-andabili SH, Rezaei N. Toll like receptor (TLR)-induced differential expression of microRNAs (MiRs) promotes proper immune response against infections: a systematic review[J]. J Infect, 2013, 67(4):251-264.
[17] Essandoh K, Fan GC. Role of extracellular and intra-cellular microRNAs in sepsis[J]. Biochim Biophys Acta, 2014, 1842(11):2155-2162.
[18] Tipton DA, Cho S, Zacharia N, et al. Inhibition of interleukin-17-stimulated interleukin-6 and -8 pro-duction by cranberry components in human gingival fibroblasts and epithelial cells[J]. J Periodontal Res, 2013, 48(5):638-646.
[19] Yamauchi K, Shibata Y, Kimura T, et al. Azithro-mycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-γ stimulated macro-phages[J]. Int J Biol Sci, 2009, 5(7):667-678.
[20] Tipton DA, Babu JP, Dabbous MKh. Effects of cran-berry components on human aggressive periodontitis gingival fibroblasts[J]. J Periodontal Res, 2013, 48 (4):433-442.
[21] Bostanci N, Belibasakis GN. Porphyromonas gin-givalis : an invasive and evasive opportunistic oral pathogen[J]. FEMS Microbiol Lett, 2012, 333(1):1-9.
[22] Hajishengallis G. Immuno-microbial pathogenesis of periodontitis: keystones, pathobionts, and host re-sponse[J]. Trends Immunol, 2014, 35(1):3-11.
[23] Wang M, Krauss JL, Domon H, et al. Microbial hijacking of complement-Toll-like receptor crosstalk [J]. Sci Signal, 2010, 3(109):ra11.
[24] Hajishengallis G. Complement and periodontitis[J]. Biochem Pharmacol, 2010, 80(12):1992-2001.
[25] Kolev M, Le Friec G, Kemper C. Complement—tapping into new sites and effector systems[J]. Nat Rev Immunol, 2014, 14(12):811-820.
[26] Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway[J]. Curr Cancer Drug Targets, 2009, 9(2):237-249.
[27] Quan JH, Chu JQ, Kwon J, et al. Intracellular networks of the PI3K/AKT and MAPK pathways for regulating Toxoplasma gondii -induced IL-23 and IL-12 pro-duction in human THP-1 cells[J]. PLoS One, 2015, 10(11):e0141550.
[28] Hickey FB, Brereton CF, Mills KH. Adenylate cycalse toxin of Bordetella pertussis inhibits TLR-induced IRF-1 and IRF-8 activation and IL-12 production and enhances IL-10 through MAPK activation in dendritic cells[J]. J Leukoc Biol, 2008, 84(1):234-243.
[29] Liang S,Krauss JL,Domon H, et al. The C5a rece-ptor impairs IL-12-dependent clearance of Porphy - romonas gingivalis and is required for induction of periodontal bone loss[J]. J Immunol, 2011, 186(2): 869-877.
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[3] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[4] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[5] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[6] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[7] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[8] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[9] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[10] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[11] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[12] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[13] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
[14] Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599.
[15] Zhou Jiajia,Zhao Lei,Xu Xin. Research progress on the genetic polymorphism of periodontitis [J]. Int J Stomatol, 2022, 49(4): 432-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .