国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (3): 256-264.doi: 10.7518/gjkq.2024035

• 口腔组织再生专栏 • 上一篇    下一篇

经脂多糖和低氧预处理来源的外泌体在组织修复再生中的作用研究进展

陈三(),杨润泽,吴家媛()   

  1. 遵义医科大学附属口腔医院牙体牙髓科 遵义 563000
  • 收稿日期:2023-08-05 修回日期:2024-01-21 出版日期:2024-05-01 发布日期:2024-05-06
  • 通讯作者: 吴家媛
  • 作者简介:陈三,住院医师,硕士,Email:704450920@qq.com
  • 基金资助:
    国家自然科学基金(81460102);贵州省科技计划项目(ZK[2022]-638);贵州省卫生健康委科学技术基金项目(gzwjkj2020-1-163);遵义市科技计划项目(遵市科合HZ字(2020)293号)

Research progress on the role of exosomes derived from lipopolysaccharides and hypoxic preconditioning in the repair and regeneration of tissues

San Chen(),Runze Yang,Jiayuan Wu()   

  1. Dept. of Cariology and Endodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi 563000, China
  • Received:2023-08-05 Revised:2024-01-21 Online:2024-05-01 Published:2024-05-06
  • Contact: Jiayuan Wu
  • Supported by:
    National Natural Science Foundation of China(81460102);Guizhou Provincial Science and Technology Program Project(ZK[2022]-638);Science and Technology Fund Project of Guizhou Provincial Health Commission(gzwjkj2020-1-163);Zunyi Science and Technology Plan Project [Zunyi Kehe HZ Zi (2020) No. 293]

摘要:

作为促进组织再生的有效工具,外泌体具有免疫原性低、功能性质稳定、无细胞毒性等特点,在组织修复再生领域具有广阔前景。随着预处理方式的兴起,与单纯培养来源的外泌体不同,经预处理来源的外泌体具有增强的生物学特性,且不同预处理方式来源的外泌体可能具有不同的生物学功能。目前的预处理方式以脂多糖和低氧预处理多见,两种方式均可产生优质的外泌体。本文通过描述外泌体在组织修复再生中的作用,引入脂多糖和低氧预处理方式对外泌体的功能优势影响,重点阐述两种预处理来源的外泌体在组织修复再生中的作用潜力,探讨其在血管再生、骨再生、软骨再生、神经保护以及口腔组织再生领域的影响,为优化组织再生提供新的思路。

关键词: 外泌体, 预处理, 脂多糖, 低氧, 组织再生, 组织修复

Abstract:

Exosomes are characterized by low immunogenicity, stable functional properties, and non-cytotoxicity and are effective for the promotion of tissue regeneration. The use of exosomes opens up a wide range of prospects in the field of tissue repair and regeneration. Exosomes from pre-treated sources possess enhanced biological properties compared with exosomes from culture alone. Exosomes from different pretreatment methods may have different biological functions. Various pretreatment methods, including pretreatment with lipopolysaccharides and hypoxia, can produce high-qua-lity exosomes. However, few studies have investigated on the application of exosomes derived from these pretreatment methods in the field of tissue repair and regeneration. This article describes the role of exosomes in tissue repair and regeneration, introduces the functional advantages of exosomes derived from lipopolysaccharide and hypoxic preconditio-ning, and focuses on the potential of such exosomes in tissue repair and regeneration. The effects of exosomes on angiogenesis, bone regeneration, cartilage regeneration, neuroprotection, and oral tissue regeneration are discussed. This work provides new ideas for optimizing tissue regeneration.

Key words: exosome, pretreatment, lipopolysaccharide, hypoxia, tissue regeneration, tissue repair

中图分类号: 

  • R78
1 艾晓青, 窦磊. 外泌体优化策略的研究进展[J]. 临床医学研究与实践, 2021, 6(16): 190-192.
Ai XQ, Dou L. Research progress of exosome optimization strategies[J]. Clin Res Pract, 2021, 6(16): 190-192.
2 刘威. 预处理的外泌体对骨质疏松骨整合及糖尿病创面修复作用的研究[D]. 上海: 中国人民解放军海军军医大学, 2021.
Liu W. Study on the effect of pretreated exosomes on bone integration in osteoporosis and diabetic wo-und repair[D]. Shanghai: PLA Naval Medical University, 2021.
3 Azoidis I, Cox SC, Davies OG. The role of extracellular vesicles in biomineralisation: current perspective and application in regenerative medicine[J]. J Tissue Eng, 2018, 9: 2041731418810130.
4 陈彦, 杨雪婷, 马悦, 等. 基于外泌体的牙髓再生策略[J]. 中华口腔医学杂志, 2021, 56(7): 709-714.
Chen Y, Yang XT, Ma Y, et al. Exosomes-based strategies for dental pulp regeneration[J]. Chin J Stomatol, 2021, 56(7): 709-714.
5 Mai ZZ, Chen H, Ye Y, et al. Translational and clinical applications of dental stem cell-derived exosomes[J]. Front Genet, 2021, 12: 750990.
6 Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17.
7 Duan S, Wang C, Xu X, et al. Peripheral serum exosomes isolated from patients with acute myocardial infarction promote endothelial cell angiogenesis via the miR-126-3p/TSC1/mTORC1/HIF-1α pathway[J]. Int J Nanomedicine, 2022, 17: 1577-1592.
8 Yang Z, Yang Y, Xu YC, et al. Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration[J]. Stem Cell Res Ther, 2021, 12(1): 442.
9 Chen Y, Ma Y, Yang XT, et al. The application of pulp tissue derived-exosomes in pulp regeneration: a novel cell-homing approach[J]. Int J Nanomedicine, 2022, 17: 465-476.
10 Chen WJ, Xie J, Lin X, et al. The role of small extracellular vesicles derived from lipopolysaccharide-preconditioned human dental pulp stem cells in dental pulp regeneration[J]. J Endod, 2021, 47(6): 961-969.
11 Jiao Y, Lu W, Xu P, et al. Hepatocyte-derived exosome may be as a biomarker of liver regeneration and prognostic valuation in patients with acute-on-chronic liver failure[J]. Hepatol Int, 2021, 15(4): 957-969.
12 Byun SE, Sim C, Chung Y, et al. Skeletal muscle regeneration by the exosomes of adipose tissue-derived mesenchymal stem cells[J]. Curr Issues Mol Biol, 2021, 43(3): 1473-1488.
13 Tang QM, Lu B, He J, et al. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stro-ma regeneration[J]. Biomaterials, 2022, 280: 121320.
14 Wu JY, Yang QY, Wu SN, et al. Adipose-derived stem cell exosomes promoted hair regeneration[J]. Tissue Eng Regen Med, 2021, 18(4): 685-691.
15 Ramasubramanian L, Kumar P, Wang AJ. Enginee-ring extracellular vesicles as nanotherapeutics for regenerative medicine[J]. Biomolecules, 2019, 10(1): 48.
16 Chen SY, Sun FT, Qian H, et al. Preconditioning and engineering strategies for improving the efficacy of mesenchymal stem cell-derived exosomes in cell-free therapy[J]. Stem Cells Int, 2022, 2022: 1779346.
17 Phan J, Kumar P, Hao DK, et al. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy[J]. J Extracell Vesicles, 2018, 7(1): 1522236.
18 Joo HS, Suh JH, Lee HJ, et al. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent[J]. Int J Mol Sci, 2020, 21(3):727.
19 Li J, Ju Y, Liu S, et al. Exosomes derived from lipopolysaccharide-preconditioned human dental pulp stem cells regulate Schwann cell migration and differentiation[J]. Connect Tissue Res, 2021, 62(3): 277-286.
20 Wang HS, Yang FH, Wang YJ, et al. Odontoblastic exosomes attenuate apoptosis in neighboring cells[J]. J Dent Res, 2019, 98(11): 1271-1278.
21 Shi WW, Guo SJ, Liu L, et al. Small extracellular vesicles from lipopolysaccharide-preconditioned den-tal follicle cells promote periodontal regeneration in an inflammatory microenvironment[J]. ACS Biomater Sci Eng, 2020, 6(10): 5797-5810.
22 Zhao M, Dai W, Wang H, et al. Periodontal ligament fibroblasts regulate osteoblasts by exosome secretion induced by inflammatory stimuli[J]. Arch Oral Biol, 2019, 105: 27-34.
23 Zhao H, Yeersheng R, Xia Y, et al. Hypoxia enhanced bone regeneration through the HIF-1α/β‑ catenin pathway in femoral head osteonecrosis[J]. Am J Med Sci, 2021, 362(1): 78-91.
24 Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way[J]. Artif Cells Nanomed Biotechnol, 2018, 46(8): 1659-1670.
25 Mu JF, Li LM, Wu JH, et al. Hypoxia-stimulated mesenchymal stem cell-derived exosomes loaded by adhesive hydrogel for effective angiogenic treatment of spinal cord injury[J]. Biomater Sci, 2022, 10(7): 1803-1811.
26 Liu W, Li LW, Rong YL, et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J]. Acta Biomater, 2020, 103: 196-212.
27 Han YD, Ren J, Bai Y, et al. Exosomes from hypo-xia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R[J]. Int J Biochem Cell Biol, 2019, 109: 59-68.
28 Xue CL, Shen YM, Li XC, et al. Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway[J]. Stem Cells Dev, 2018, 27(7): 456-465.
29 Gao WL, He RH, Ren JH, et al. Exosomal HMGB1 derived from hypoxia-conditioned bone marrow mesenchymal stem cells increases angiogenesis via the JNK/HIF-1α pathway[J]. FEBS Open Bio, 2021, 11(5): 1364-1373.
30 Haque N, Widera D, Govindasamy V, et al. Extracellular vesicles from stem and progenitor cells for cell-free regenerative therapy[J]. Curr Mol Med, 2022, 22(2): 120-131.
31 Wu SC, Kuo PJ, Rau CS, et al. Increased angiogenesis by exosomes secreted by adipose-derived stem cells upon lipopolysaccharide stimulation[J]. Int J Mol Sci, 2021, 22(16): 8877.
32 Wang JJ, Pothana K, Chen SZ, et al. Ultraviolet B irradiation alters the level and miR contents of exosomes released by keratinocytes in diabetic condition[J]. Photochem Photobiol, 2022, 98(5): 1122-1130.
33 Jabbari N, Nawaz M, Rezaie J. Ionizing radiation increases the activity of exosomal secretory pathway in MCF-7 human breast cancer cells: a possible way to communicate resistance against radiotherapy[J]. Int J Mol Sci, 2019, 20(15): 3649.
34 Pszczółkowska B, Olejarz W, Filipek M, et al. Exosome secretion and cellular response of DU145 and PC3 after exposure to alpha radiation[J]. Radiat Environ Biophys, 2022, 61(4): 639-650.
35 Mo F, Xu YW, Zhang JL, et al. Effects of hypoxia and radiation-induced exosomes on migration of lung cancer cells and angiogenesis of umbilical vein endothelial cells[J]. Radiat Res, 2020, 194(1): 71-80.
36 Ye Y, Hao J, Hong Z, et al. Downregulation of MicroRNA-145-5p in activated microglial exosomes promotes astrocyte proliferation by removal of Smad3 inhibition[J]. Neurochem Res, 2022, 47(2): 382-393.
37 Xu YP, Tian YY, Wang Y, et al. Exosomes derived from astrocytes after oxygen-glucose deprivation promote differentiation and migration of oligodendrocyte precursor cells in vitro [J]. Mol Biol Rep, 2021, 48(7): 5473-5484.
38 Yuan N, Ge ZG, Ji WC, et al. Exosomes secreted from hypoxia-preconditioned mesenchymal stem cells prevent steroid-induced osteonecrosis of the femoral head by promoting angiogenesis in rats[J]. Biomed Res Int, 2021, 2021: 6655225.
39 Liang B, Liang JM, Ding JN, et al. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway[J]. Stem Cell Res Ther, 2019, 10(1): 335.
40 Duan A, Shen K, Li B, et al. Extracellular vesicles derived from LPS-preconditioned human synovial mesenchymal stem cells inhibit extracellular matrix degradation and prevent osteoarthritis of the knee in a mouse model[J]. Stem Cell Res Ther, 2021, 12(1): 427.
41 Shen K, Duan A, Cheng J, et al. Exosomes derived from hypoxia preconditioned mesenchymal stem cells laden in a silk hydrogel promote cartilage regeneration via the miR-205-5p/PTEN/AKT pathway[J]. Acta Biomater, 2022, 143: 173-188.
42 杨润泽, 王玮, 陈三, 等. 外泌体及预处理方式对牙髓再生的作用[J]. 中国组织工程研究, 2024, 28(13): 2105-2113.
Yang RZ, Wang W, Chen S, et al. Effect of exosomes and preconditioning on pulp regeneration[J]. Chin J Tiss Eng Res, 2024, 28(13): 2105-2113.
43 蓝彬园, 林熹, 陈文瑨, 等. 脂多糖刺激人牙髓干细胞分泌的外泌体联合基质细胞衍生因子-1对牙髓再生的影响[J]. 中华口腔医学杂志, 2022, 57(1): 60-67.
Lan BY, Lin X, Chen WJ, et al. Effect of lipopolysaccharide-stimulated exosomes from human dental pulp stem cells combined with stromal cell-derived factor-1 on dental pulp regeneration[J]. Chin J Stomatol, 2022, 57(1): 60-67.
44 Dou L, Yan Q, Liang P, et al. iTRAQ-Based proteomic analysis exploring the influence of hypoxia on the proteome of dental pulp stem cells under 3D culture[J]. Proteomics, 2018, 18(3/4). doi: 10.1002/pmic.201700215 .
doi: 10.1002/pmic.201700215
45 Li BY, Xian XH, Lin XW, et al. Hypoxia alters the proteome profile and enhances the angiogenic potential of dental pulp stem cell-derived exosomes[J]. Biomolecules, 2022, 12(4): 575.
46 Li B, Liang A, Zhou Y, et al. Hypoxia preconditioned DPSC-derived exosomes regulate angiogenesis via transferring LOXL2[J]. Exp Cell Res, 2023, 425(2): 113543.
47 Lin X, Wang H, Wu T, et al. Exosomes derived from stem cells from apical papilla promote angiogenesis via miR-126 under hypoxia[J]. Oral Dis, 2023, 29(8): 3408-3419.
48 Huang YL, Liu Q, Liu L, et al. Lipopolysaccharide-preconditioned dental follicle stem cells derived small extracellular vesicles treating periodontitis via reactive oxygen species/mitogen-activated protein kinase signaling-mediated antioxidant effect[J]. Int J Nanomedicine, 2022, 17: 799-819.
49 Liu PP, Qin LH, Liu C, et al. Exosomes derived from hypoxia-conditioned stem cells of human deciduous exfoliated teeth enhance angiogenesis via the transfer of let-7f-5p and miR-210-3p[J]. Front Cell Dev Biol, 2022, 10: 879877.
[1] 张伟杰, 刘向晖, 杨玉娥. 同源盒基因调控先天缺牙的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 374-380.
[2] 胡雅瑄,马子涵,王将凌,汪永跃. 可降解新型聚乳酸膜在引导骨组织再生中的应用[J]. 国际口腔医学杂志, 2024, 51(2): 187-192.
[3] 王家烯,吕鸣樾,袁泉. 黏性骨在口腔组织再生中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 594-602.
[4] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[5] 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358.
[6] 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126.
[7] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[8] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[9] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[10] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[11] 蔡韵竹,朱姝,刘尧,陈旭. 牙源性干细胞用于治疗神经系统疾病的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 255-262.
[12] 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36.
[13] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[14] 蒋宇磊,夏斌,饶南荃,杨禾丰,许彪. 外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究[J]. 国际口腔医学杂志, 2021, 48(6): 711-717.
[15] 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391-397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!