国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (2): 187-192.doi: 10.7518/gjkq.2024030

• 论著 • 上一篇    下一篇

可降解新型聚乳酸膜在引导骨组织再生中的应用

胡雅瑄(),马子涵,王将凌,汪永跃()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2023-05-24 修回日期:2023-12-20 出版日期:2024-03-01 发布日期:2024-03-11
  • 通讯作者: 汪永跃
  • 作者简介:胡雅瑄,医师,硕士,Email:18706402213@163.com

Application of degradable new polylactic acid membrane in guiding bone tissue regeneration

Yaxuan Hu(),Zihan Ma,Jiangling Wang,Yongyue Wang()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-05-24 Revised:2023-12-20 Online:2024-03-01 Published:2024-03-11
  • Contact: Yongyue Wang

摘要:

目的 探索一种可降解新型聚乳酸膜(PDLLA/PLLA)在引导骨组织再生中的应用效果。 方法 新西兰大白兔24只,体重2.5~3.0 kg,在动物一侧下颌骨体部近下颌骨下缘处制备10 mm×5 mm×3 mm箱状骨缺损,然后将动物随机分为实验组、对照组和空白组,每组8只。实验组动物骨缺损处填Bio-oss骨粉后将PDLLA/PLLA覆盖于缺损表面,对照组动物骨缺损处填Bio-oss骨粉后将Guidor聚乳酸可吸收膜覆盖于缺损表面,空白组动物不作处理。术后8、12周采集缺损处标本,进行大体观察、Micro-CT检查和组织病理学观察。 结果 实验期间各组实验动物均未发生炎症和排异反应,各组创口愈合良好,成骨活跃。大体观察显示,术后8周实验组动物成骨量较多,材料降解较少,对照组动物成骨量较实验组少,材料降解完全;术后12周实验组动物和对照组动物成骨量相当,实验组材料进一步降解,空白组动物成骨量少于实验组和对照组。术后8、12周,Micro-CT可以观察到实验组和对照组缺损区域新生骨明显多于空白组。术后8、12周,实验组动物和对照组动物新生骨相对骨体积分数(BV/TV)、骨密度(BMD)和骨小梁数量(Tb.N)均显著高于空白组动物(P<0.05),且术后8周实验组动物新生骨BV/TV高于对照组(P<0.05);但在术后12周时实验组与对照组新生骨BV/TV、BMD和Tb.N比较,差异无统计学意义(P>0.05)。组织切片观察显示,术后8周实验组动物新生骨小梁周边细胞生长活跃,并可见少量成骨细胞及破骨细胞;术后12周实验组动物骨小梁周围可见大量成骨细胞及破骨细胞,骨缺损部位骨组织密度接近周边正常骨组织。 结论 与对照组和空白组相比,PDLLA/PLLA呈现出了良好的生物相容性和骨传导性,可以明显促进缺损处愈合。

关键词: 聚乳酸, 复合材料, 骨组织修复工程, 下颌骨, 缺损, 动物实验

Abstract:

Objective This work aimed to explore the application effect of a new biodegradable polylactic acid membrane (PDLLA/PLLA) in guiding bone tissue regeneration. Methods A total of 24 New Zealand white rabbits, weighing 2.5~3.0 kg, were prepared at the lower edge of the mandible near the body of the mandible on one side of the animal. The dimensions of the bone defect were 5 mm×3 mm. The animals were randomly divided into the experimental group, control group, and blank group, with eight animals in each group. The experimental group animals were filled with Bio-oss bone powder, and PDLLA/PLLA was covered on the defect surface. The control group animals were filled with Bio-oss bone powder, and a Guidor polylactic acid membrane was covered on the defect surface. The blank group animals were not treated. At 8 and 12 weeks after the operation, specimens of the defect were collected for gross observation, micro-CT examination, and histopathological observation. Results During the experiment, no inflammation and rejection reaction occurred in the experimental animals in each group, and the wounds in each group healed well and osteogenesis was active. The gross observation showed that the animals in the experimental group had more bone formation and less material degradation at 8 weeks after the operation, whereas the animals in the control group had less bone formation and complete material degradation compared with the experimental group. At 12 weeks after the operation, the amount of bone formation of animals in the experimental group and the control group was the same, but the materials in the experimental group were further degraded. The amount of bone formation of animals in the blank group was less than that in the experimental group and the control group. At 8 and 12 weeks after the operation, micro-CT revealed that the new bone in the defect area of the experimental group and the control group was significantly more than that of the blank group. At 8 and 12 weeks after the operation, the bone volume/tissue volume (BV/TV), bone mineral density (BMD) and trabecular number (Tb.N) of the new bone in the experimental group and the control group were significantly higher than those in the blank group. Histological analysis demonstrated that the cells surrounding the new bone trabeculae in the experimental group grew actively at 8 weeks after the operation, and a small amount of osteoblasts and osteoclasts were visible. At 12 weeks after the operation, a large number of osteoblasts and osteoclasts were found around the bone trabeculae of the experimental group animals, and the bone tissue density at the bone defect site was close to the surrounding normal bone tissue. Conclusion Thus, the new polylactic acid membrane (PDLLA/PLLA) has good biocompatibility and bone conductivity, and it can significantly promote the healing of defects.

Key words: polylactic acid, compound material, bone tissue repair engineering, mandible, defect, animal experiment

中图分类号: 

  • R782.2

图1

Micro-CT三维重建分析"

图2

术后8、12周骨微观参数比较*P<0.05,**P<0.01,***P<0.001,ns P>0.05。"

图3

骨缺损区组织切片观察 HE × 10"

1 Gentile P, Chiono V, Tonda-Turo C, et al. Polymeric membranes for guided bone regeneration[J]. Biotechnol J, 2011, 6(10): 1187-1197.
2 Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications[J]. J Appl Microbiol, 2019, 127(6): 1612-1626.
3 de França JOC, da Silva Valadares D, Paiva MF, et al. Polymers based on PLA from synthesis using D, L-lactic acid (or racemic lactide) and some biomedical applications: a short review[J]. Polymers (Basel), 2022, 14(12): 2317.
4 Ilyas RA, Sapuan SM, Harussani MM, et al. Polylactic acid (PLA) biocomposite: processing, additive manufacturing and advanced applications[J]. Polymers (Basel), 2021, 13(8): 1326.
5 Zaaba NF, Jaafar M. A review on degradation mecha-nisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation[J]. Polym Eng Sci, 2020, 60(9): 2061-2075.
6 Annunziata M, Nastri L, Borgonovo A, et al. Poly-D-L-lactic acid membranes for bone regeneration[J]. J Craniofac Surg, 2015, 26(5): 1691-1696.
7 Yan WJ, Yang FH, Liu ZN, et al. Anti-inflammatory and mineralization effects of an ASP/PLGA-ASP/ACP/PLLA-PLGA composite membrane as a dental pulp capping agent[J]. J Funct Biomater, 2022, 13(3): 106.
8 Scantlebury TV. 1982-1992: a decade of technology development for guided tissue regeneration[J]. J Periodontol, 1993, 64(): 1129-1137.
9 Stoecklin-Wasmer C, Rutjes AWS, da Costa BR, et al. Absorbable collagen membranes for periodontal regeneration[J]. J Dent Res, 2013, 92(9): 773-781.
10 Ramires GAD, Helena JT, Oliveira JCS, et al. Eva-luation of guided bone regeneration in critical defects using bovine and porcine collagen membranes: histomorphometric and immunohistochemical analyses[J]. Int J Biomater, 2021, 2021: 8828194.
11 Annunziata M, Nastri L, Cecoro G, et al. The use of poly-d, l-lactic acid (PDLLA) devices for bone augmentation techniques: a systematic review[J]. Molecules, 2017, 22(12): 2214.
12 Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, et al. Poly(lactic acid)-mass production, processing, industrial applications, and end of life[J]. Adv Drug Deliv Rev, 2016, 107: 333-366.
13 廖凯荣, 全大萍, 高建文, 等. PLLA/PDLLA共混物的力学性能及体外降解特性研究[J].中山大学学报(自然科学版), 2002, 41(1): 51-54.
Liao KR, Quan DP, Gao JW, et al. The mechanical properties and degradation behavior in vitro of PLLA/PDLLA blends[J]. Acta Sci Natur Univ Sunyatseni, 2002, 41(1): 51-54.
14 徐高祥, 张鲁鲁, 高华丽, 等. 不同比例PLLA/PDLLA/5% HA复合物体外降解性能的研究[J]. 中国实验诊断学, 2017, 21(6): 1067-1071.
Xu GX, Zhang LL, Gao LH, et al. Study on in vitro degradation performance of PLLA/PDLLA/5% HA complex with different proportions[J]. Chin J Lab Diagn, 2017, 21(6): 1067-1071.
15 Sitompul JP, Setyawan D, Nabila AG, et al. Synthesis of nanocomposite materials for biodegradable food packaging[J]. J Oil Palm Res, 2019, 2(1): 33-45.
16 Friedmann A, Stavropoulos A, Bilhan H. GTR treatment in furcation grade Ⅱ periodontal defects with the recently reintroduced guidor PLA matrix barrier: a case series with chronological step-by-step illustrations[J]. Case Rep Dent, 2020, 2020: 8856049.
[1] 马瑜鸿,赵蕾. 微创非手术牙周治疗技术的临床研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 227-232.
[2] 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358.
[3] 李春洁, 毕小琴, 朱桂全. 口腔颌面部肿瘤患者游离皮瓣修复术的并发症预防及处理[J]. 国际口腔医学杂志, 2023, 50(2): 127-137.
[4] 木合森·牙生江,买买提吐逊·吐尔地. 带线锚钉在口腔颌面外科的应用[J]. 国际口腔医学杂志, 2023, 50(1): 114-119.
[5] 黎静文,周力. 颈椎成熟法评估下颌骨骨龄的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 337-342.
[6] 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203.
[7] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[8] 王剑. 浅谈嵌体和高嵌体修复的临床应用[J]. 国际口腔医学杂志, 2021, 48(5): 497-505.
[9] 陈宸,田雨婷,程立,王国松,胡涛. 儿童第一恒磨牙大面积缺损永久修复时机的考量和展望[J]. 国际口腔医学杂志, 2021, 48(2): 129-134.
[10] 张心驰,吴炜. 颌面骨再生领域3D打印技术及应用材料的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 677-685.
[11] 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546.
[12] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[13] 林阳阳,侯敏. 双侧下颌支矢状骨劈开术对下颌近心骨段位移变化的影响[J]. 国际口腔医学杂志, 2019, 46(6): 718-723.
[14] 王小萌,王晓,史册,孙宏晨,黄洋. 骨形态发生蛋白信号通路及其交叉对话对下颌骨发育的影响[J]. 国际口腔医学杂志, 2019, 46(3): 258-262.
[15] 韩雨亭,吴燕茹. 应用龈壁提升术修复牙体缺损的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 349-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[6] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王金涛 刘美娟 孙宏晨 欧阳喈. 牙槽嵴牵张成骨[J]. 国际口腔医学杂志, 2004, 31(02): 146 -148 .
[9] 蔡霞,李成章. 前列腺素E_2受体EP亚型在牙周炎发病机制中的作用[J]. 国际口腔医学杂志, 2005, 32(06): 461 -462 .
[10] 轩东英,张建波 金岩. 胚胎发育期TGF-β超家族成员与腭裂发生的关系[J]. 国际口腔医学杂志, 2004, 31(02): 132 -134 .