国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (3): 265-277.doi: 10.7518/gjkq.2024033
Xing Han(),Yinghui Li,Wenwen Li,Shukui Xu,Wensheng Ma(
)
摘要:
力诱导的牙周组织重塑在口腔稳态调控中具有重要意义。牙周膜为正畸牙移动(OTM)过程提供微环境支持,而牙周膜干细胞(PDLSC)作为重要的间充质干细胞,在调控牙周组织重塑中发挥重要作用。本文综述了机械力刺激下PDLSC调控骨重塑的研究进展,指出PDLSC可通过多种途径感知机械力刺激,是具有多向分化能力及免疫调节作用的间充质干细胞。PDLSC通过调控骨骼系统细胞,如成骨细胞、破骨细胞及骨细胞的活动调节骨重塑,还可通过调控免疫系统活动间接影响骨重塑。本文总结了PDLSC在OTM骨重塑中的功能作用,为进一步探索机械力调控骨重塑的机制提供了基础。
中图分类号:
1 | Chen S, Ye X, Yu X, et al. Co-culture with periodontal ligament stem cells enhanced osteoblastic diffe-rentiation of MC3T3-E1 cells and osteoclastic diffe-rentiation of RAW264.7 cells[J]. Int J Clin Exp Pathol, 2015, 8(11): 14596-14607. |
2 | Zhao Z, Liu J, Weir MD, et al. Periodontal ligament stem cell-based bioactive constructs for bone tissue engineering[J]. Front Bioeng Biotechnol, 2022(10): 1071472. |
3 | Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force[J]. Am J Orthod Dentofac Orthop, 2006, 129(4): 469.e1-469.e32. |
4 | Wang L, Liang H, Sun B, et al. Role of TRPC6 in periodontal tissue reconstruction mediated by appropriate stress[J]. Stem Cell Res Ther, 2022, 13(1): 401. |
5 | 王林, 王熙, 季楠, 等. 机械激活性离子通道压电蛋白Piezo1通过Notch信号通路介导牙周膜干细胞成骨分化作用机制研究[J]. 华西口腔医学杂志, 2020, 38(6): 628-636. |
Wang L, Wang X, Ji N, et al. Mechanisms of the mechanically activated ion channel Piezo1 protein in mediating osteogenic differentiation of periodontal ligament stem cells via the Notch signaling pathway[J]. West China J Stomatol, 2020, 38(6): 628-636. | |
6 | 杨双艳. 内质网应激介导的PERK-eIF2α-ATF4信号通路在牵张力作用下牙周膜干细胞成骨向分化中的作用研究[D]. 济南: 山东大学, 2017. |
Yang SY. Study of PERK-eIF2α-ATF4 pathway mediated by endoplasmic reticulum stress response in hPDLSCs osteogenic differentiation induced by cyclic stretch[D]. Jinan: Shandong University, 2017. | |
7 | 席迅. ROS-Nrf2在周期性牵张力促进牙周膜干细胞成骨分化中的作用及机制研究[D]. 济南: 山东大学, 2023. |
Xi X. Effects and mechanism of ROS-Nrf2 on osteogenic differentiation in periodontal ligament stem cells under cyclic mechanical stress[D]. Jinan: Shandong University, 2023. | |
8 | Xi X, Li Z, Liu H, et al. Nrf2 activation is involved in cyclic mechanical stress-stimulated osteogenic differentiation in periodontal ligament stem cells via PI3K/Akt signaling and HO1-SOD2 interaction[J]. Front Cell Dev Biol, 2022, 9: 816000. |
9 | Sun Y, Kaneko S, Li XK, et al. The PI3K/Akt signal hyperactivates Eya1 via the SUMOylation pathway[J]. Oncogene, 2015, 34(19): 2527-2537. |
10 | Wang W, Wang M, Guo X, et al. Effect of tensile frequency on the osteogenic differentiation of perio-dontal ligament stem cells[J]. Int J Gen Med, 2022, 15: 5957-5971. |
11 | Wang J, Yang H, Ma X, et al. LRP6/filamentous-actin signaling facilitates osteogenic commitment in mechanically induced periodontal ligament stem cells[J]. Cell Mol Biol Lett, 2023, 28(1): 7. |
12 | Li Z, Wu Z, Xi X, et al. Cellular communication network factor 1 interlinks autophagy and ERK signa-ling to promote osteogenesis of periodontal ligament stem cells[J]. J Periodontal Res, 2022, 57(6): 1169-1182. |
13 | 罗金英. Gli1在人牙周膜干细胞应力成骨过程中的调控作用[D]. 重庆: 第三军医大学, 2015. |
Luo JY. Regulation of Gli1 on stress osteogenesis of human periodontal stem cells[D].Chongqing: the Third Military Medical University, 2015. | |
14 | Xu L, Wang C, Li Y, et al. ANGPTL4 regulates the osteogenic differentiation of periodontal ligament stem cells[J]. Funct Integr Genomics, 2022, 22(5): 769-781. |
15 | Meng XM, Wang WJ, Wang XL. MicroRNA-34a and microRNA-146a target CELF3 and suppress the osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch[J]. J Dent Sci, 2022, 17(3): 1281-1291. |
16 | Qin QY, Yang HQ, Zhang C, et al. lncRNA HHIP-AS1 promotes the osteogenic differentiation potential and inhibits the migration ability of periodontal ligament stem cells[J]. Stem Cells Int, 2021, 2021: 5595580. |
17 | 刘梦珺. MiR-503-5p在正畸大鼠牵张侧牙槽骨的表达及对骨形成的作用[D].济南: 山东大学, 2017. |
Liu MJ. The expression and roles of miR-503-5p in bone formation under orthodontic mechanical strain in rats[D]. Jinan: Shandong University, 2017. | |
18 | Kanzaki H, Wada S, Yamaguchi Y, et al. Compression and tension variably alter osteoprotegerin expression via miR-3198 in periodontal ligament cells[J]. BMC Mol Cell Biol, 2019, 20(1): 6. |
19 | Wang H, Feng C, Jin Y, et al. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019, 234(7): 10166-10177. |
20 | Sun YQ, Fu JF, Lin FR, et al. Force-induced nitric oxide promotes osteogenic activity during orthodontic tooth movement in mice[J]. Stem Cells Int, 2022, 2022: 4775445. |
21 | Zheng JY, Xu BW, Yang K. Autophagy regulates osteogenic differentiation of human periodontal ligament stem cells induced by orthodontic tension[J]. Stem Cells Int, 2022, 2022: 2983862. |
22 | Mizoguchi T, Ono N. The diverse origin of bone-forming osteoblasts[J]. J Bone Miner Res, 2021, 36(8): 1432-1447. |
23 | Ei Hsu Hlaing E, Ishihara Y, Odagaki N, et al. The expression and regulation of Wnt1 in tooth movement-initiated mechanotransduction[J]. Am J Orthod Dentofac Orthop, 2020, 158(6): e151-e160. |
24 | Xu J, Lin Y, Tian M, et al. Periodontal ligament stem cell-derived extracellular vesicles enhance tension-induced osteogenesis[J]. ACS Biomater Sci Eng, 2023, 9(1): 388-398. |
25 | Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease[J]. Front Immunol, 2022, 13: 998244. |
26 | Lv PY, Gao PF, Tian GJ, et al. Osteocyte-derived exosomes induced by mechanical strain promote human periodontal ligament stem cell proliferation and osteogenic differentiation via the miR-181b-5p/PTEN/AKT signaling pathway[J]. Stem Cell Res Ther, 2020, 11(1): 295. |
27 | Men Y, Wang YH, Yi YT, et al. Gli1+ periodontium stem cells are regulated by osteocytes and occlusal force[J]. Dev Cell, 2020, 54(5): 639-654.e6. |
28 | Chalazias A, Plemmenos G, Evangeliou E, et al. The pivotal role of transient receptor potential channels in oral physiology[J]. Curr Med Chem, 2022, 29(8): 1408-1425. |
29 | Jin SS, He DQ, Wang Y, et al. Mechanical force modulates periodontal ligament stem cell characte-ristics during bone remodelling via TRPV4[J]. Cell Prolif, 2020, 53(10): e12912. |
30 | Mandl P, Hayer S, Karonitsch T, et al. Nicotinic acetylcholine receptors modulate osteoclastogenesis[J]. Arthritis Res Ther, 2016, 18: 63. |
31 | Wu L, Zhou Y, Zhou Z, et al. Nicotine induces the production of IL-1β and IL-8 via the α7 nAChR/NF-κB pathway in human periodontal ligament cells: an in vitro study[J]. Cell Physiol Biochem, 2014, 34(2): 423-431. |
32 | Chen YJ, Yang K, Zhou ZF, et al. Mechanical stress modulates the RANKL/OPG system of periodontal ligament stem cells via a7 nAChR in human deci-duous teeth: an in vitro study[J]. Stem Cells Int, 2019, 2019: 5326341. |
33 | Boppart MD, Mahmassani ZS. Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy[J]. Am J Physiol Cell Physiol, 2019, 317(4): C629-C641. |
34 | Li Y, Zhan Q, Bao MY, et al. Biomechanical and bio-logical responses of periodontium in orthodontic tooth movement: up-date in a new decade[J]. Int J Oral Sci, 2021, 13(1): 20. |
35 | Kim SJ, Park KH, Park YG, et al. Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-α expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway[J]. Arch Oral Biol, 2013, 58(6): 707-716. |
36 | 朱庆党, 巢永烈, 陈新民, 等. 机械应力对人牙周膜成纤维细胞整合素β1 mRNA表达的调节[J]. 华西口腔医学杂志, 2008, 26(2): 194-197. |
Zhu QD, Chao YL, Chen XM, et al. Regulation of integrin beta1 mRNA expression by mechanical stress in human periodontal ligament fibroblasts[J]. West China J Stomatology, 2008, 26(2): 194-197. | |
37 | Bozkaya E, Canigur Bavbek N, Isler SC, et al. Eva-luation of heat shock protein 70 and toll-like receptor 4 expression in gingival crevicular fluid in response to orthodontic forces[J]. Clin Oral Investig, 2021, 25(11): 6455-6464. |
38 | Marciniak J, Lossdörfer S, Knaup I, et al. Orthodontic cell stress modifies proinflammatory cytokine expression in human PDL cells and induces immunomodulatory effects via TLR-4 signaling in vitro [J]. Clin Oral Investig, 2020, 24(4): 1411-1419. |
39 | Johnson CD, Fischer D, Smith IM, et al. Hyperglycemic conditions enhance the mechanosensitivity of proinflammatory RAW264.7 macrophages[J]. Tissue Eng Part A, 2023, 29(5/6): 172-184. |
40 | Wang Y, Li Q, Liu F, et al. Transcriptional activation of glucose transporter 1 in orthodontic tooth movement-associated mechanical response[J]. Int J Oral Sci, 2018, 10(3): 27. |
41 | Westhrin M, Moen SH, Holien T, et al. Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease[J]. Haematologica, 2015, 100(12): e511-e514. |
42 | Li S, Li Q, Zhu Y, et al. GDF15 induced by compressive force contributes to osteoclast differentiation in human periodontal ligament cells[J]. Exp Cell Res, 2020, 387(1): 111745. |
43 | Symmank J, Zimmermann S, Goldschmitt J, et al. Mechanically-induced GDF15 secretion by perio-dontal ligament fibroblasts regulates osteogenic transcription[J]. Sci Rep, 2019, 9(1): 11516. |
44 | Li Q, Zhang JY, Liu DW, et al. Force-induced decline of FOXM1 in human periodontal ligament cells contributes to osteoclast differentiation[J]. Angle Orthod, 2019, 89(5): 804-811. |
45 | Li Q, Han GF, Liu DW, et al. Force-induced decline of TEA domain family member 1 contributes to osteoclastogenesis via regulation of osteoprotegerin[J]. Arch Oral Biol, 2019, 100: 23-32. |
46 | Zhao M, Ma Q, Zhao Z, et al. Periodontal ligament fibroblast-derived exosomes induced by compressive force promote macrophage M1 polarization via Yes-associated protein[J]. Arch Oral Biol, 2021, 132: 105263. |
47 | Kapoor P, Chowdhry A, Bagga DK, et al. Micro-RNAs in oral fluids (saliva and gingival crevicular fluid) as biomarkers in orthodontics: systematic review and integrated bioinformatic analysis[J]. Prog Orthod, 2021, 22(1): 31. |
48 | Liu WJ, Li ZF, Cai ZP, et al. LncRNA-mRNA expression profiles and functional networks in osteoclast differentiation[J]. J Cell Mol Med, 2020, 24(17): 9786-9797. |
49 | Huang YP, Liu H, Guo RZ, et al. Long non-coding RNA FER1L4 mediates the autophagy of periodontal ligament stem cells under orthodontic compressive force via AKT/FOXO3 pathway[J]. Front Cell Dev Biol, 2021, 9: 631181. |
50 | Zhang XG, Zhao YL, Zhao ZH, et al. Knockdown of DANCR reduces osteoclastogenesis and root resorption induced by compression force via Jagged1[J]. Cell Cycle Georget Tex, 2019, 18(15): 1759-1769. |
51 | Liu F, Wen F, He D, et al. Force-induced H2S by PDLSCs modifies osteoclastic activity during tooth movement[J]. J Dent Res, 2017, 96(6): 694-702. |
52 | He DQ, Liu FL, Cui SJ, et al. Mechanical load- induced H2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1[J]. Stem Cell Res Ther, 2020, 11(1): 112. |
53 | Huang HM, Han CS, Cui SJ, et al. Mechanical force-promoted osteoclastic differentiation via pe-riodontal ligament stem cell exosomal protein ANXA3[J]. Stem Cell Rep, 2022, 17(8): 1842-1858. |
54 | Jiang N, He D, Ma Y, et al. Force-induced autophagy in periodontal ligament stem cells modulates M1 macrophage polarization via AKT signaling[J]. Front Cell Dev Biol, 2021, 9: 666631. |
55 | Jiang LP, Tang Z. Expression and regulation of the ERK1/2 and p38 MAPK signaling pathways in pe-riodontal tissue remodeling of orthodontic tooth movement[J]. Mol Med Rep, 2018, 17(1): 1499-1506. |
56 | Kirschneck C, Küchler EC, Wolf M, et al. Effects of the highly COX-2-selective analgesic NSAID etoricoxib on human periodontal ligament fibroblasts during compressive orthodontic mechanical strain[J]. Mediators Inflamm, 2019, 2019: 2514956. |
57 | 黄瑾, 刘建国, 宋琦, 等. 血小板衍生生长因子-BB、转化生长因子-β1联合应用对大鼠正畸牙牙周膜中整合素β3表达的影响[J]. 华西口腔医学杂志, 2014, 32(4): 413-417. |
Huang J, Liu JG, Song Q, et al. Synergistic effect of platelet-derived growth factor-BB and transforming growth factor-beta1, on expression of integrin beta3 in periodontal membrane of rat orthodontic tooth[J]. West China J Stomatology, 2014, 32(4): 413-417. | |
58 | Palioto DB, Coletta RD, Graner E, et al. The inf-luence of enamel matrix derivative associated with insulin-like growth factor‑ Ⅰ on periodontal ligament fibroblasts[J]. J Periodontol, 2004, 75(4): 498-504. |
59 | Manokawinchoke J, Sumrejkanchanakij P, Pavasant P, et al. Notch signaling participates in TGF-β-induced SOST expression under intermittent compressive stress[J]. J Cell Physiol, 2017, 232(8): 2221-2230. |
60 | Kim BJ, Lee YS, Lee SY, et al. Afamin stimulates osteoclastogenesis and bone resorption via Gi-coupled receptor and Ca2+/calmodulin-dependent protein kinase (CaMK) pathways[J]. J Endocrinol Investig, 2013, 36(10): 876-882. |
61 | Li Y, Zheng W, Liu JS, et al. Expression of osteoclastogenesis inducers in a tissue model of periodontal ligament under compression[J]. J Dent Res, 2011, 90(1): 115-120. |
62 | Jianru YI, MeiLe LI, Yang Y, et al. Static compression regulates OPG expression in periodontal ligament cells via the CAMK Ⅱ pathway[J]. J Appl Oral Sci, 2015, 23(6): 549-554. |
63 | Jin Y, Li J, Wang YT, et al. Functional role of mecha-nosensitive ion channel Piezo1 in human periodontal ligament cells[J]. Angle Orthod, 2015, 85(1): 87-94. |
64 | Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation[J]. Mol Cells, 2017, 40(10): 706-713. |
65 | Watanabe T, Yasue A, Fujihara S, et al. PERIOSTIN regulates MMP-2 expression via the αvβ3 integrin/ERK pathway in human periodontal ligament cells[J]. Arch Oral Biol, 2012, 57(1): 52-59. |
66 | Mao Y, Wang L, Zhu Y, et al. Tension force-induced bone formation in orthodontic tooth movement via modulation of the GSK-3β/β-catenin signaling pathway[J]. J Mol Histol, 2018, 49(1): 75-84. |
67 | Wongkhantee S, Yongchaitrakul T, Pavasant P. Mechanical stress induces osteopontin expression in human periodontal ligament cells through rho kinase[J]. J Periodontol, 2007, 78(6): 1113-1119. |
68 | Premaraj S, Souza I, Premaraj T. Mechanical loa-ding activates β-catenin signaling in periodontal li-gament cells[J]. Angle Orthod, 2011, 81(4): 592-599. |
69 | Fu HD, Wang BK, Wan ZQ, et al. Wnt5a mediated canonical Wnt signaling pathway activation in ortho-dontic tooth movement: possible role in the tension force-induced bone formation[J]. J Mol Histol, 2016, 47(5): 455-466. |
70 | Zhang L, Liu W, Zhao J, et al. Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/β-catenin pathway[J]. Biochim Biophys Acta, 2016, 1860(10): 2211-2219. |
71 | Behm C, Zhao Z, Andrukhov O. Immunomodulatory activities of periodontal ligament stem cells in orthodontic forces-induced inflammatory processes: current views and future perspectives[J]. Front Oral Health, 2022, 3: 877348. |
72 | Lin JY, Huang JC, Zhang ZQ, et al. Periodontal ligament cells under mechanical force regulate local immune homeostasis by modulating Th17/Treg cell differentiation[J]. Clin Oral Investig, 2022, 26(4): 3747-3764. |
73 | Kook SH, Jang YS, Lee JC. Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-media-ted activation of CD4+ T cells[J]. J Cell Biochem, 2011, 112(10): 2891-2901. |
74 | Yan Y, Liu F, Kou X, et al. T cells are required for orthodontic tooth movement[J]. J Dent Res, 2015, 94(10): 1463-1470. |
75 | Wolf M, Lossdörfer S, al RCraveiroet. Regulation of macrophage migration and activity by high-mobility group box 1 protein released from periodontal ligament cells during orthodontically induced perio-dontal repair: an in vitro and in vivo experimental study[J]. J Orofac Orthop, 2013, 74(5): 420-434. |
76 | 申琳. 静压力作用下牙周膜干细胞介导大鼠T淋巴细胞凋亡的研究[D]. 西安: 第四军医大学, 2016. |
Shen L. The study of PDLSCs-mediated T cell apoptosis under the static pressure[D]. Xi’an: The Fourth Military Medical University, 2016. | |
77 | Manokawinchoke J, Chareonvit S, Trachoo V, et al. Intermittent compressive force regulates dentin matrix protein 1 expression in human periodontal ligament stem cells[J]. J Dent Sci, 2023, 18(1): 105-111. |
78 | Şen S, Erber R. Neuronal guidance molecules in bone remodeling and orthodontic tooth movement[J]. Int J Mol Sci, 2022, 23(17): 10077. |
79 | Zhang M, Yu Y, He D, et al. Neural regulation of alveolar bone remodeling and periodontal ligament metabolism during orthodontic tooth movement in response to therapeutic loading[J]. J World Fed Orthod, 2022, 11(5): 139-145. |
80 | Cao H, Kou X, Yang R, et al. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement[J]. J Dent Res, 2014, 93(11): 1163-1169. |
81 | Lee HJ, Jeong GS, Pi SH, et al. Heme oxygenase-1 protects human periodontal ligament cells against substance P-induced RANKL expression[J]. J Perio-dontal Res, 2010, 45(3): 367-374. |
82 | Sanz M, Marco del Castillo A, Jepsen S, et al. Perio-dontitis and cardiovascular diseases: consensus report[J]. J Clin Periodontol, 2020, 47(3): 268-288. |
83 | Li LY, Liu WJ, Wang H, et al. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions[J]. Cell Death Dis, 2018, 9(5): 480. |
84 | Liu J, Zhao Y, Niu QN, et al. Long noncoding RNA expression profiles of periodontal ligament stem cells from the periodontitis microenvironment in response to static mechanical strain[J]. Stem Cells Int, 2021, 2021: 6655526. |
85 | Sun WF, Liu J, Zhang X, et al. Long noncoding RNA and mRNA m6A modification analyses of periodontal ligament stem cells from the periodontitis microenvironment exposed to static mechanical strain[J]. Stem Cells Int, 2022, 2022: 6243004. |
86 | Andrukhov O, Behm C, Blufstein A, et al. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: implication in disease and tissue regeneration[J]. World J Stem Cells, 2019, 11(9): 604-617. |
87 | An Y, Liu WJ, Xue P, et al. Autophagy promotes MSC-mediated vascularization in cutaneous wound healing via regulation of VEGF secretion[J]. Cell Death Dis, 2018, 9(2): 58. |
[1] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[2] | 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580. |
[3] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[4] | 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271. |
[5] | 安宁,李姣,梅志丹. 骨保护素/核因子-κB受体活化因子/核因子κB-受体活化因子配体信号分子调控牙萌出的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 116-120. |
[6] | 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744. |
[7] | 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527. |
[8] | 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660. |
[9] | 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668. |
[10] | 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546. |
[11] | 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615. |
[12] | 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616-620. |
[13] | 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145. |
[14] | 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31. |
[15] | 朱俊瑾,周佳琦,伍颖颖. 哺乳动物雷帕霉素靶蛋白复合物1介导的自噬对骨代谢的调控[J]. 国际口腔医学杂志, 2020, 47(1): 84-89. |
|