国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (1): 84-89.doi: 10.7518/gjkq.2020005
Zhu Junjin1,Zhou Jiaqi1,Wu Yingying2,()
摘要:
哺乳动物雷帕霉素靶蛋白复合物(mTORC)1是哺乳动物雷帕霉素靶蛋白形成的一种复合物,在细胞合成代谢过程中起重要作用,其参与调控的自噬作用近年来受到广泛关注。自噬是细胞降解损坏的蛋白质或细胞器并将其循环利用的过程。随着对mTORC1/自噬效应的研究逐渐深入,其在骨代谢方面的调控作用愈发凸显。本文就mTORC1介导的自噬通路在成骨细胞、破骨细胞等骨相关细胞方面的作用及其机制进行综述,为骨代谢的生物学机制和骨组织疾病的研究提供新思路。
中图分类号:
[1] | Potter CJ, Pedraza LG, Xu T . Akt regulates growth by directly phosphorylating Tsc2[J]. Nat Cell Biol, 2002,4(9):658-665. |
[2] | Ma L, Chen Z, Erdjument-Bromage H , et al. Pho-sphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis[J]. Cell, 2005,121(2):179-193. |
[3] | Laplante M , Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012,149(2):274-293. |
[4] | Martina JA, Chen Y, Gucek M , et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB[J]. Auto-phagy, 2012,8(6):903-914. |
[5] | Hua Y, Shen M ,McDonald C,et al.Autophagy dys-function in autoinflammatory diseases[J]. J Autoimmun, 2018,88:11-20. |
[6] | Rockel JS, Kapoor M . Autophagy: controlling cell fate in rheumatic diseases[J]. Nat Rev Rheumatol, 2016,12(9):517-531. |
[7] | Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation[J]. Curr Opin Cell Biol, 2010,22(2):124-131. |
[8] | Jung CH, Jun CB, Ro SH , et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the auto-phagy machinery[J]. Mol Biol Cell, 2009,20(7):1992-2003. |
[9] | Duran A, Amanchy R, Linares JF , et al. p62 is a key regulator of nutrient sensing in the mTORC1 path-way[J]. Mol Cell, 2011,44(1):134-146. |
[10] | Liu YQ, Hong ZL, Zhan LB , et al. Wedelolactone enhances osteoblastogenesis by regulating Wnt/β- atenin signaling pathway but suppresses osteoclasto-genesis by NF-κB/c-fos/NFATc1 pathway[J]. Sci Rep, 2016,6:32260. |
[11] | Chen Q, Shou P, Zheng C , et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts[J]. Cell Death Differ, 2016,23(7):1128-1139. |
[12] | Greco EA, Lenzi A, Migliaccio S . The obesity of bone[J]. Ther Adv Endocrinol Metab, 2015,6(6):273-286. |
[13] | Chen C, Akiyama K, Wang D , et al. mTOR inhibitiontion rescues osteopenia in mice with systemic sclerosis[J]. J Exp Med, 2015,212(1):73-91. |
[14] | Qi M, Zhang L, Ma Y , et al. Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteo-porosis[J]. Theranostics, 2017,7(18):4498-4516. |
[15] | Yin ZY, Yin J, Huo YF , et al. Rapamycin facilitates fracture healing through inducing cell autophagy and suppressing cell apoptosis in bone tissues[J]. Eur Rev Med Pharmacol Sci, 2017,21(21):4989-4998. |
[16] | Zhou Z, Shi G, Zheng X , et al. Autophagy activation facilitates mechanical stimulation-promoted osteo-blast differentiation and ameliorates hindlimb un-loading-induced bone loss[J]. Biochem Biophys Res Commun, 2018,498(3):667-673. |
[17] | Piemontese M, Onal M, Xiong J , et al. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage[J]. Sci Rep, 2016,6:24262. |
[18] | Liu F, Fang F, Yuan H , et al. Suppression of auto-phagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation[J]. J Bone Miner Res, 2013,28(11):2414-2430. |
[19] | Pantovic A, Krstic A, Janjetovic K , et al. Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic dif-ferentiation of human mesenchymal stem cells[J]. Bone, 2013,52(1):524-531. |
[20] | Liu Y, Kou X, Chen C , et al. Chronic high dose alcohol induces osteopenia via activation of mTOR signaling in bone marrow mesenchymal stem cells[J]. Stem Cells, 2016,34(8):2157-2168. |
[21] | Nollet M, Santucci-Darmanin S, Breuil V , et al. Autophagy in osteoblasts is involved in mineraliza-tion and bone homeostasis[J]. Autophagy, 2014,10(11):1965-1977. |
[22] | 余守和, 洪岸 . Runx2通过抑制细胞巨自噬以诱导C2C12细胞向成骨细胞分化[J]. 中国病理生理杂志, 2013,29(3):481-487. |
Yu SH, Hong A . Runx2 promotes osteogenic diffe-rentiating C2C12 cells through inhibiting macroauto-phagy[J]. Chin J Pathophysiol, 2013,29(3):481-487. | |
[23] | Fitter S, Matthews MP, Martin SK , et al. mTORC1 plays an important role in skeletal development by controlling preosteoblast differentiation[J]. Mol Cell Biol, 2017,37(7). doi: 10.1128/MCB.00668-16. |
[24] | Thoreen CC, Chantranupong L, Keys HR , et al. A unifying model for mTORC1-mediated regulation of mRNA translation[J]. Nature, 2012,485(7396):109-113. |
[25] | Sambandam Y, Townsend MT, Pierce JJ , et al. Mi-cro-gravity control of autophagy modulates osteo-clastogenesis[J]. Bone, 2014,61:125-131. |
[26] | Cai ZY, Yang B, Shi YX , et al. High glucose downre-gulates the effects of autophagy on osteoclastogenesis via the AMPK/mTOR/ULK1 pathway[J]. Biochem Biophys Res Commun, 2018,503(2):428-435. |
[27] | Xiu Y, Xu H, Zhao C , et al. Chloroquine reduces osteoclastogenesis in murine osteoporosis by pre-venting TRAF3 degradation[J]. J Clin Invest, 2014,124(1):297-310. |
[28] | Xu S, Zhang Y, Liu B , et al. Activation of mTORC1 in B lymphocytes promotes osteoclast formation via regulation of β-catenin and RANKL/OPG[J]. J Bone Miner Res, 2016,31(7):1320-1333. |
[29] | Tong X, Gu J, Song R , et al. Osteoprotegerin inhibit osteoclast differentiation and bone resorption by enhancing autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro[J]. J Cell Biochem, 2018.doi: 10.1002/jcb.27468. |
[30] | Dai Q, Xie F, Han Y , et al. Inactivation of regulatory-associated protein of mTOR (raptor)/mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoclasts increases bone mass by inhibiting osteoclast differentiation in mice[J]. J Biol Chem, 2017,292(1):196-204. |
[31] | Galson DL, Roodman GD . Pathobiology of Paget’s disease of bone[J]. J Bone Metab, 2014,21(2):85-98. |
[32] | McManus S, Bisson M, Chamberland R , et al. Auto-phagy and 3-phosphoinositide-dependent kinase 1 (PDK1)-related kinome in pagetic osteoclasts[J]. J Bone Miner Res, 2016,31(7):1334-1343. |
[33] | Plotkin LI, Speacht TL, Donahue HJ . Cx43 and me-chanotransduction in bone[J]. Curr Osteoporos Rep, 2015,13(2):67-72. |
[34] | Gao J, Cheng TS, Qin A , et al. Glucocorticoid impairs cell-cell communication by autophagy-me-diated degradation of connexin 43 in osteocytes[J]. Oncotarget, 2016,7(19):26966-26978. |
[35] | Onal M, Piemontese M, Xiong J , et al. Suppression of autophagy in osteocytes mimics skeletal aging[J]. J Biol Chem, 2013,288(24):17432-17440. |
[36] | Luo D, Ren H, Li T , et al. Rapamycin reduces severity of senile osteoporosis by activating osteocyte auto-phagy[J]. Osteoporos Int, 2016,27(3):1093-1101. |
[1] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[2] | 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580. |
[3] | 叶玉琳,江莉婷,高益鸣. 舍格伦综合征唾液腺中自噬现象的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 556-560. |
[4] | 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419. |
[5] | 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348. |
[6] | 安宁,李姣,梅志丹. 骨保护素/核因子-κB受体活化因子/核因子κB-受体活化因子配体信号分子调控牙萌出的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 116-120. |
[7] | 方苓力,谭玺,叶雨丝,黄兰,何瑶. 颞下颌关节退行性变早期髁突软骨细胞行为改变的实验研究[J]. 国际口腔医学杂志, 2021, 48(4): 417-425. |
[8] | 周丰,陈野,陈晨,张奕宁,耿瑞蔓,刘戟. 沉默信息调节因子1调控牙周炎发生发展的机制[J]. 国际口腔医学杂志, 2021, 48(3): 341-346. |
[9] | 尹圆圆,马华钰,李昕怡,徐静晨,柳汀,陈嵩,何姝姝. 小鼠正畸牙移动中牙周组织自噬相关基因表达的初步研究[J]. 国际口腔医学杂志, 2020, 47(6): 627-634. |
[10] | 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668. |
[11] | 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546. |
[12] | 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615. |
[13] | 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616-620. |
[14] | 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285. |
[15] | 卢可心,张迪亚,吴燕岷. 蛋白酶激活受体在牙周组织细胞中相关作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 657-662. |
|