国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (5): 573-580.doi: 10.7518/gjkq.2023080

• 综述 • 上一篇    下一篇

甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展

余岳霖1(),孔卫东2()   

  1. 1.暨南大学口腔医学院 广州 510630
    2.暨南大学第一附属医院口腔正畸科 广州 510630
  • 收稿日期:2023-02-02 修回日期:2023-05-20 出版日期:2023-09-01 发布日期:2023-09-01
  • 通讯作者: 孔卫东
  • 作者简介:余岳霖,硕士,Email:1183929874@qq.com
  • 基金资助:
    暨南大学附属第一医院临床前沿新技术项目(JNU1AF-CFTP-2022-a01229)

Research progress on the association between primary failure of tooth eruption and parathyroid hormone receptor 1 gene

Yu Yuelin1(),Kong Weidong2()   

  1. 1.School of Stomatology, Jinan University, Guangzhou 510630, China
    2.Dept. of Orthodontics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
  • Received:2023-02-02 Revised:2023-05-20 Online:2023-09-01 Published:2023-09-01
  • Contact: Weidong Kong
  • Supported by:
    Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University(JNU1AF-CFTP-2022-a01229)

摘要:

原发性牙齿萌出障碍(PFE)是一种罕见的常染色体显性遗传性疾病,主要表现为单侧或双侧后牙区开𬌗,无明显局部阻碍因素和全身因素,主要与患者牙齿萌出机制异常有关。目前研究认为其病因与甲状旁腺激素受体1(PTH1R)基因突变有密切联系,但其背后的致病机制还有待阐明。本文就与PFE发病相关的热点基因PTH1R信号缺陷与破骨细胞功能、牙囊发育、牙槽骨形成、牙周膜形成、牙根形成的研究现状进行综述,意为PFE的病因遗传学及分子机制的研究提供参考。

关键词: 原发性牙齿萌出障碍, 甲状旁腺激素受体1, 破骨细胞, 牙囊, 牙槽骨, 牙周膜

Abstract:

Primary failure of eruption (PFE) is a rare autosomal dominant hereditary disease mainly characterized by unilateral or bilateral posterior tooth open bite and absence of obvious local hindrance or systemic factors. PFE is related to the abnormal mechanism of tooth eruption. Its etiology is closely related to the mutation of parathyroid hormone receptor 1 (PTH1R) gene, but the underlying mechanism remains to be elucidated. This article reviews the research status of hot gene PTH1R signal defects related to the pathogenesis of PFE and osteoclast function, dental follicle development, alveolar bone formation, periodontal ligament formation, and root formation, to provide reference for the study of etiological genetics and molecular mechanism of PFE.

Key words: primary failure of eruption, parathyroid hormone receptor 1, osteoclast, dental follicle, alveolar bone, periodontal ligament

中图分类号: 

  • Q 754

表 1

PFE相关的PTH1R可疑致病性突变位点"

临床表型染色体位置编码DNA变异位点蛋白质序列改变参考文献
PFE46937391c.313+32A>GN/A[8]
PFE46939352c.322delTp.Cys108ValfsTer82[10]
PFE46939362c.331G>Tp.Glu111Ter[10]
PFE46939387c.356C>Tp.Pro119Leu[16]
PFE46939564c.425G>Tp.Gly142Val[17]
PFE46939575c.436C>Tp. Arg146Ter[18]
PFE46939578c.439C>Tp.Arg147Cys[9]
PFE46939602c.463G>Tp.Glu155Ter[7]
PFE46939644c.505G>Tp.Glu169Ter[15]
PFE46939683c.543+1G>AN/A[7]
PFE46939683c.543+1G>TN/A[10]
PFE46939842c.544-25_544-23delCTGN/A[9]
PFE46939895c.572delAp.Tyr191SerfsTer14[5]
PFE46939957c.636dupTp.Arg213Ter[10,18]
PFE46940150c.639-2A>CN/A[10]
PFE46940150c.639-2A>GN/A[10]
PFE46940325c.813dupTp.Ala272cysfsTer127[18]
PFE46940850c.892T>Gp.Trp298Gly[9]
PFE46940905c.947C>Ap.Ser316Ter[9]
PFE46942515c.989G>Tp.Gly330Val[9]
PFE46942519c.996dupCp.Ala333ArgfsTer66[5]
PFE46942542c.1016G>Ap.Trp339Ter[10,18]
PFE46942559c.1036delCp.Leu346TrpfsTer9[10]
PFE46942901c.1050-3C>GN/A[7]
PFE46942936c.1082G>Ap.Trp361Ter[9]
PFE46942946c.1092delGp.Val365CysfsTer140[19]
PFE46944150c.1348_1350delTTCp.Phe450del[9]
PFE46944238c.1354-1G>AN/A[20]
PFE46944956c.1595delCp.Pro532LeufsTer85[8]
PFE46945129c.1765T>Cp.Trp589Arg[6]
PFE和Eiken骨骼发育不良46935424c.103G>Ap.Glu35Lys[21]
PFE/Blomstrand软骨发育不良46937356c.310C>Tp.Arg104Ter[10]
PFE/Blomstrand软骨发育不良46939426c.395C>Tp.Pro132Leu[16]
PFE/Blomstrand软骨发育不良46942945c.1093delGp.365CysfsTer141[10,18]
PFE/Blomstrand软骨发育不良46943287c.1148G>Ap.Arg383Gln[10]
PFE(伴轻微骨骼异常)46939935c.611T>AP.Val204Glu[22]

图 1

PTH1R信号缺陷在小鼠牙齿萌出障碍中的影响"

1 Hanisch M, Hanisch L, Kleinheinz J, et al. Primary failure of eruption (PFE): a systematic review[J]. Head Face Med, 2018, 14(1): 5.
2 Proffit WR, Vig KW. Primary failure of eruption: a possible cause of posterior open-bite[J]. Am J Orthod, 1981, 80(2): 173-190.
3 Yu Y, Cui C, Guan SY, et al. Function of orofacial stem cells in tooth eruption: an evolving perspective[J]. Chin J Dent Res, 2021, 24(3): 143-152.
4 Awad MG, Dalbah L, Srirengalakshmi M, et al. Review and case report of the treatment in a young girl with primary failure of eruption[J]. Clin Case Rep, 2022, 10(3): e05632.
5 Frazier-Bowers SA, Hendricks HM, Wright JT, et al. Novel mutations in PTH1R associated with primary failure of eruption and osteoarthritis[J]. J Dent Res, 2014, 93(2): 134-139.
6 Grippaudo C, Cafiero C, D’Apolito I, et al. Primary failure of eruption: clinical and genetic findings in the mixed dentition[J]. Angle Orthod, 2018, 88(3): 275-282.
7 Decker E, Stellzig-Eisenhauer A, Fiebig BS, et al. PTHR1 loss-of-function mutations in familial, nonsyndromic primary failure of tooth eruption[J]. Am J Hum Genet, 2008, 83(6): 781-786.
8 Grippaudo C, D’Apolito I, Cafiero C, et al. Valida-ting clinical characteristic of primary failure of eruption (PFE) associated with PTH1R variants[J]. Prog Orthod, 2021, 22(1): 43.
9 Risom L, Christoffersen L, Daugaard-Jensen J, et al. Identification of six novel PTH1R mutations in fa-milies with a history of primary failure of tooth eruption[J]. PLoS One, 2013, 8(9): e74601.
10 Roth H, Fritsche LG, Meier C, et al. Expanding the spectrum of PTH1R mutations in patients with primary failure of tooth eruption[J]. Clin Oral Investig, 2014, 18(2): 377-384.
11 Yamaguchi T, Hosomichi K, Shirota T, et al. Primary failure of tooth eruption: etiology and management[J]. Jpn Dent Sci Rev, 2022, 58: 258-267.
12 Izumida E, Suzawa T, Miyamoto Y, et al. Functional analysis of PTH1R variants found in primary failure of eruption[J]. J Dent Res, 2020, 99(4): 429-436.
13 Nagata M, Ono N, Ono W. Mesenchymal progenitor regulation of tooth eruption: a view from PTHrP[J]. J Dent Res, 2020, 99(2): 133-142.
14 Kanno CM, de Oliveira JA, Garcia JF, et al. Twenty-year follow-up of a familial case of PTH1R-asso-ciated primary failure of tooth eruption[J]. Am J Orthod Dentofacial Orthop, 2017, 151(3): 598-606.
15 Grippaudo C, Cafiero C, D’Apolito I, et al. A novel nonsense PTH1R variant shows incomplete penetrance of primary failure of eruption: a case report[J]. BMC Oral Health, 2019, 19(1): 249.
16 Yamaguchi T, Hosomichi K, Narita A, et al. Exome resequencing combined with linkage analysis identifies novel PTH1R variants in primary failure of tooth eruption in Japanese[J]. J Bone Miner Res, 2011, 26(7): 1655-1661.
17 Aziz S, Hermann NV, Dunø M, et al. Primary fai-lure of eruption of teeth in two siblings with a novel mutation in the PTH1R gene[J]. Eur Arch Paediatr Dent, 2019, 20(3): 295-300.
18 Pilz P, Meyer-Marcotty P, Eigenthaler M, et al. Differential diagnosis of primary failure of eruption (PFE) with and without evidence of pathogenic mutations in the PTHR1 gene[J]. Fortschritte Der Kie-ferorthopadie, 2014, 75(3): 226-239.
19 Rhoads SG, Hendricks HM, Frazier-Bowers SA. Establishing the diagnostic criteria for eruption disorders based on genetic and clinical data[J]. Am J Orthod Dentofacial Orthop, 2013, 144(2): 194-202.
20 Frazier-Bowers SA, Simmons D, Wright JT, et al. Primary failure of eruption and PTH1R: the importance of a genetic diagnosis for orthodontic treatment planning[J]. Am J Orthod Dentofacial Orthop, 2010, 137(2): 160.e1-160.e7, 161.
21 Moirangthem A, Narayanan DL, Jacob P, et al. Report of second case and clinical and molecular cha-racterization of Eiken syndrome[J]. Clin Genet, 2018, 94(5): 457-460.
22 Jelani M, Kang C, Mohamoud HS, et al. A novel homozygous PTH1R variant identified through whole-exome sequencing further expands the clinical spectrum of primary failure of tooth eruption in a consanguineous Saudi family[J]. Arch Oral Biol, 2016, 67: 28-33.
23 Zhao LH, Ma SS, Sutkeviciute I, et al. Structure and dynamics of the active human parathyroid hormone receptor-1[J]. Science, 2019, 364(6436): 148-153.
24 Fukushima H, Jimi E, Kajiya H, et al. Parathyroid-hormone-related protein induces expression of receptor activator of NF-kappa B ligand in human periodontal ligament cells via a cAMP/protein kinase A-independent pathway[J]. J Dent Res, 2005, 84(4): 329-334.
25 Lyu P, Li B, Li PR, et al. Parathyroid hormone 1 receptor signaling in dental mesenchymal stem cells: basic and clinical implications[J]. Front Cell Dev Biol, 2021, 9: 654715.
26 赵迪芳, 关淑元, 樊怡, 等. 特发性甲状旁腺功能减退症对大鼠牙萌出的影响[J]. 中华口腔医学杂志, 2021, 56(9): 880-891.
Zhao DF, Guan SY, Fan Y, et al. Effects of idiopa-thic hypoparathyroidism on tooth eruption of rats[J]. Chin J Stomatol, 2021, 56(9): 880-891.
27 Subramanian H, Döring F, Kollert S, et al. PTH1R mutants found in patients with primary failure of tooth eruption disrupt G-protein signaling[J]. PLoS One, 2016, 11(11): e0167033.
28 Richman JM. Shedding new light on the mysteries of tooth eruption[J]. Proc Natl Acad Sci U S A, 2019, 116(2): 353-355.
29 Dempster DW, Hughes-Begos CE, Plavetic-Chee K, et al. Normal human osteoclasts formed from peripheral blood monocytes express PTH type 1 receptors and are stimulated by PTH in the absence of osteoblasts[J]. J Cell Biochem, 2005, 95(1): 139-148.
30 Langub MC, Monier-Faugere MC, Qi QL, et al. Parathyroid hormone/parathyroid hormone-related peptide type 1 receptor in human bone[J]. J Bone Miner Res, 2001, 16(3): 448-456.
31 Liu SX, Zhu WP, Li SJ, et al. Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R[J]. Int J Mol Med, 2016, 37(2): 284-292.
32 Martin TJ, Sims NA, Seeman E. Physiological and pharmacological roles of PTH and PTHrP in bone using their shared receptor, PTH1R[J]. Endocr Rev, 2021, 42(4): 383-406.
33 Ansari N, Ho PW, Crimeen-Irwin B, et al. Autocrine and paracrine regulation of the murine skeleton by osteocyte-derived parathyroid hormone-related protein[J]. J Bone Miner Res, 2018, 33(1): 137-153.
34 Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways[J]. J Bone Miner Metab, 2021, 39(1): 19-26.
35 Takahashi A, Nagata M, Gupta A, et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption[J]. Proc Natl Acad Sci U S A, 2019, 116(2): 575-580.
36 Cui C, Bi R, Liu W, et al. Role of PTH1R signaling in Prx1+ mesenchymal progenitors during eruption[J]. J Dent Res, 2020, 99(11): 1296-1305.
37 Ono W, Sakagami N, Nishimori S, et al. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation[J]. Nat Commun, 2016, 7: 11277.
38 Fan Y, Hanai JI, Le PT, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate[J]. Cell Metab, 2017, 25(3): 661-672.
39 Li JY, Parada C, Chai Y. Cellular and molecular mechanisms of tooth root development[J]. Development, 2017, 144(3): 374-384.
40 Tokavanich N, Gupta A, Nagata M, et al. A three-dimensional analysis of primary failure of eruption in humans and mice[J]. Oral Dis, 2020, 26(2): 391-400.
41 Wang J, Muir AM, Ren YS, et al. Essential roles of bone morphogenetic protein-1 and mammalian tolloid-like 1 in postnatal root dentin formation[J]. J Endod, 2017, 43(1): 109-115.
42 Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow[J]. Cell Stem Cell, 2014, 15(2): 154-168.
43 Zhang D, Zhang S, Wang J, et al. LepR-expressing stem cells are essential for alveolar bone regeneration[J]. J Dent Res, 2020, 99(11): 1279-1286.
44 Esposito A, Wang L, Li TS, et al. Role of Prx1-expressing skeletal cells and Prx1-expression in fracture repair[J]. Bone, 2020, 139: 115521.
45 Wang XP. Tooth eruption without roots[J]. J Dent Res, 2013, 92(3): 212-214.
46 Cheng ZJ, Wang XM, Ge J, et al. Disturbed enamel biomineralization in col1-caPPR mouse incisor[J]. Calcif Tissue Int, 2009, 84(6): 494-501.
47 盛云飞. 原发性萌出障碍(PFE)的变异位点与临床表型的相关性研究[D]. 青岛: 青岛大学, 2019.
Sheng YF. The study on the correlation of mutation sites and clinical phenotypes of primary failure of eruption (PFE)[D]. Qingdao: Qingdao University, 2019.
48 Assiry AA, Albalawi AM, Zafar MS, et al. KMT2C, a histone methyltransferase, is mutated in a family segregating non-syndromic primary failure of tooth eruption[J]. Sci Rep, 2019, 9(1): 16469.
[1] 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262.
[2] 尹一佳,杨瑾廷,申建琪,黄凌依,井岩,官秋玥,韩向龙. 钙黏蛋白5驱动内皮细胞特异性过表达Dickkopf 1影响骨形成[J]. 国际口腔医学杂志, 2022, 49(6): 641-647.
[3] 查蕴宸,张佳佳,孔卫东. 原发性牙齿萌出障碍病因的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 386-391.
[4] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[5] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
[6] 安宁,李姣,梅志丹. 骨保护素/核因子-κB受体活化因子/核因子κB-受体活化因子配体信号分子调控牙萌出的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 116-120.
[7] 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527.
[8] 伍春兰,唐华,陈军. 成人骨性Ⅱ类高角开牙合患者上下切牙区牙槽骨形态的三维研究[J]. 国际口腔医学杂志, 2021, 48(4): 426-432.
[9] 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660.
[10] 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668.
[11] 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546.
[12] 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615.
[13] 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616-620.
[14] 马心笛,陈蕾. 完全脱位牙再植的牙髓、牙周膜愈合:从生物学基础到牙外伤指南[J]. 国际口腔医学杂志, 2020, 47(3): 336-344.
[15] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[10] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .