国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (1): 116-120.doi: 10.7518/gjkq.2022007
An Ning1(),Li Jiao2,Mei Zhidan1()
摘要:
牙萌出是牙胚、牙槽骨以及多种类细胞系及多条通路信号分子相互作用共同调控的、复杂有序的生理过程。牙齿萌出需要在牙胚的𬌗方形成萌出通道,穿过牙槽骨和口腔黏膜到达𬌗功能位置。这一过程主要由破骨细胞直接执行,而骨保护素/核因子-κB受体活化因子/核因子κB-受体活化因子配体信号分子(OPG/RANK/RANKL)信号分子则可通过调节破骨细胞的分化与成熟来调控牙槽骨的改建,以保证牙萌出时𬌗方牙槽骨能被正常吸收。牙萌出的具体调控机制尚不明确,该文就OPG/RANK/RANKL信号分子调控牙萌出的研究现状作一综述。
[1] | 安宁, 唐正龙. 甲状旁腺激素调控牙周组织改建的研究进展[J]. 国际口腔医学杂志, 2017,44(4):466-470. |
An N, Tang ZL. Research progress on the regulation of parathyroid hormone on the remodeling of perio-dontal tissues[J]. Int J Stomatol, 2017,44(4):466-470. | |
[2] | Aggarwal P, Zavras A. Parathyroid hormone and its effects on dental tissues[J]. Oral Dis, 2012,18(1):48-54. |
[3] | Amin N, Boccardi V, Taghizadeh M, et al. Probio-tics and bone disorders: the role of RANKL/RANK/OPG pathway[J]. Aging Clin Exp Res, 2020,32(3):363-371. |
[4] | Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis[J]. Int J Mol Sci, 2019,20(18):E4653. |
[5] | Chen X, Wang ZQ, Duan N, et al. Osteoblast-osteoclast interactions[J]. Connect Tissue Res, 2018,59(2):99-107. |
[6] | Wang P, Cao YM, Zhan DX, et al. Influence of DNA methylation on the expression of OPG/RAN-KL in primary osteoporosis[J]. Int J Med Sci, 2018,15(13):1480-1485. |
[7] | Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density[J]. Cell, 1997,89(2):309-319. |
[8] | Das S, Sepahi I, Duthie A, et al. RANK receptor oligomerisation in the regulation of NFκB signalling[J]. J Mol Endocrinol, 2014,53(1):81-91. |
[9] | Wu RX, Li Q, Pei XH, et al. Effects of brucine on the OPG/RANKL/RANK signaling pathway in MDA-MB-231 and MC3T3-E1 cell coculture system[J]. E-vid Based Complement Alternat Med, 2017,2017:1693643. |
[10] | Nelson CA, Warren JT, Wang MW, et al. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor[J]. Structure, 2012,20(11):1971-1982. |
[11] | Chen X, Wang ZQ, Duan N, et al. Osteoblast-osteoclast interactions[J]. Connect Tissue Res, 2018,59(2):99-107. |
[12] | Wang P, Cao YM, Zhan DX, et al. Influence of DNA methylation on the expression of OPG/RAN-KL in primary osteoporosis[J]. Int J Med Sci, 2018,15(13):1480-1485. |
[13] | Wise GE, He HZ, Gutierrez DL, et al. Requirement of alveolar bone formation for eruption of rat molars[J]. Eur J Oral Sci, 2011,119(5):333-338. |
[14] | 安宁, 李耀, 唐正龙, 等. 不同剂量甲状旁腺激素对下颌支截骨术后骨愈合的影响及其机制研究[J]. 中华口腔医学杂志, 2018,53(6):413-418. |
An N, Li Y, Tang ZL, et al. Expression of osteoprotegerin and receptor activator of nuclear factor kappa-B ligand in mandibular ramus osteotomy healing with administration of different doses of parathyroid hormone[J]. Chin J Stomatol, 2018,53(6):413-418. | |
[15] | Chlastakova I, Lungova V, Wells K, et al. Morphogenesis and bone integration of the mouse mandibular third molar[J]. Eur J Oral Sci, 2011,119(4):265-274. |
[16] | Bradaschia-Correa V, Moreira MM, Arana-Chavez VE. Reduced RANKL expression impedes osteoclast activation and tooth eruption in alendronate-treated rats[J]. Cell Tissue Res, 2013,353(1):79-86. |
[17] | Xu F, Dong YH, Huang X, et al. Pioglitazone affects the OPG/RANKL/RANK system and increase osteoclastogenesis[J]. Mol Med Rep, 2016,14(3):2289-2296. |
[18] | Wise GE, Yao SM. Regional differences of expression of bone morphogenetic protein-2 and RANKL in the rat dental follicle[J]. Eur J Oral Sci, 2006,114(6):512-516. |
[19] | Huang H, Wang J, Zhang Y, et al. Bone resorption deficiency affects tooth root development in RAN-KL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts[J]. Bone, 2018,114:161-171. |
[20] | Gama A, Vargas-Franco JW, Sánchez Mesa DC, et al. Origins of alterations to Rankl null mutant mouse dental root development[J]. Int J Mol Sci, 2020,21(6):E2201. |
[21] | Gama A, Perea L, Yepes C, et al. Effects of post-natal inhibition of RANKL on molar eruption and root formation in C57BL/6 mice[J]. Orthod Fr, 2019,90(1):55-63. |
[22] | Vargas-Franco JW, Castaneda B, Gama A, et al. Genetically-achieved disturbances to the expression le-vels of TNFSF11 receptors modulate the effects of zoledronic acid on growing mouse skeletons[J]. Biochem Pharmacol, 2019,168:133-148. |
[23] | Koide M, Kobayashi Y, Ninomiya T, et al. Osteoprotegerin-deficient male mice as a model for severe alveolar bone loss: comparison with RANKL-overexpressing transgenic male mice[J]. Endocrinology, 2013,154(2):773-782. |
[24] | Suzuki T, Suda N, Ohyama K. Osteoclastogenesis during mouse tooth germ development is mediated by receptor activator of NFKappa-B ligand (RAN-KL)[J]. J Bone Miner Metab, 2004,22(3):185-191. |
[25] | Sun HY, Li QH, Zhang YK, et al. Regulation of OPG and RANKL expressed by human dental follicle cells in osteoclastogenesis[J]. Cell Tissue Res, 2015,362(2):399-405. |
[26] | Zhang JW, Liao LJ, Li YY, et al. Parathyroid hormone-related peptide (1-34) promotes tooth eruption and inhibits osteogenesis of dental follicle cells during tooth development[J]. J Cell Physiol, 2019,234(7):11900-11911. |
[27] | Takahashi A, Nagata M, Gupta A, et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption[J]. Proc Natl Acad Sci USA, 2019,116(2):575-580. |
[28] | Wang H, Pan M, Ni JW, et al. ClC-7 deficiency impairs tooth development and eruption[J]. Sci Rep, 2016,6:19971. |
[29] | Yu XJ, Zheng FJ, Shang WZ, et al. Isorhamnetin 3-O-neohesperidoside promotes the resorption of crown-covered bone during tooth eruption by osteoclastogenesis[J]. Sci Rep, 2020,10(1):5172. |
[30] | Chen YJ, Yang K, Zhou ZF, et al. Mechanical stress modulates the RANKL/OPG system of periodontal ligament stem cells via α7 nAChR in human deci-duous teeth: an in vitro study[J]. Stem Cells Int, 2019,2019:5326341. |
[31] | Wang XZ, Sun XY, Zhang CY, et al. RUNX2 mutation impairs 1α, 25-dihydroxyvitamin D3 mediated osteoclastogenesis in dental follicle cells[J]. Sci Rep, 2016,6:24225. |
[32] | Boabaid F, Berry JE, Koh AJ, et al. The role of parathyroid hormone-related protein in the regulation of osteoclastogenesis by cementoblasts[J]. J Periodontol, 2004,75(9):1247-1254. |
[33] | Xiang LS, Chen M, He L, et al. Wnt5a regulates dental follicle stem/progenitor cells of the periodontium[J]. Stem Cell Res Ther, 2014,5(6):135. |
[34] | Wise GE, Yao S, Odgren PR, et al. CSF-1 regulation of osteoclastogenesis for tooth eruption[J]. J Dent Res, 2005,84(9):837-841. |
[35] | Isawa M, Karakawa A, Sakai N, et al. Biological effects of anti-RANKL antibody and zoledronic acid on growth and tooth eruption in growing mice[J]. Sci Rep, 2019,9(1):19895. |
[1] | 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580. |
[2] | 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668. |
[3] | 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546. |
[4] | 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615. |
[5] | 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616-620. |
[6] | 朱俊瑾,周佳琦,伍颖颖. 哺乳动物雷帕霉素靶蛋白复合物1介导的自噬对骨代谢的调控[J]. 国际口腔医学杂志, 2020, 47(1): 84-89. |
[7] | 卢可心,张迪亚,吴燕岷. 蛋白酶激活受体在牙周组织细胞中相关作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 657-662. |
[8] | 张誉泓,戚孟春,董伟,孙红. CaMKi>Ⅱδ基因沉默对破骨细胞分化功能及c-fosi>/c-juni>/CREBi>基因的影响[J]. 国际口腔医学杂志, 2019, 46(4): 420-425. |
[9] | 蒙明梅,郭维华,周学东,邹静. 白细胞介素-1α信号通路在牙萌出中的研究[J]. 国际口腔医学杂志, 2019, 46(3): 253-257. |
[10] | 胡巍,王译凡,袁一方,李影,郭斌. 节律基因调控成骨和破骨活动机制的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 302-307. |
[11] | 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319. |
[12] | 钱浩亮, 李盛, 江宏兵. 颅骨锁骨发育不全综合征及其牙颌面表征[J]. 国际口腔医学杂志, 2018, 45(1): 64-67. |
[13] | 崔跃, 姜欢, 胡敏. 破骨细胞蛋白酪氨酸磷酸酶与正畸移动牙牙根吸收的关系[J]. 国际口腔医学杂志, 2017, 44(1): 87-91. |
[14] | 侯玉帛1 刘歆婵2 于海燕1 崔磊华3 于维先4. 牙龈蛋白及其对破骨和成骨细胞功能的影响[J]. 国际口腔医学杂志, 2016, 43(5): 609-613. |
[15] | 周正 赵长铭 焦凯 王美青. 交感神经系统-肾上腺素能受体对骨改建的调节作用[J]. 国际口腔医学杂志, 2015, 42(3): 348-351. |
|