国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (3): 302-307.doi: 10.7518/gjkq.2019006
Wei Hu,Yifan Wang,Yifang Yuan,Ying Li,Bin Guo()
摘要:
人的近日节律系统是以节律基因为核心,调控24 h体内多种节律性生理活动的主要机制。成骨活动与破骨活动两者的动态平衡是骨组织行使功能的基础。节律基因与成骨和破骨活动关系密切,在骨重建中起到重要调控作用,可能为骨再生医学的调控靶点。本文将综述近日节律系统的构成及近年研究节律基因调控成骨和破骨活动机制的新进展,可能为骨再生重建治疗提供新的思路。
中图分类号:
[1] |
Dibner C, Schibler U, Albrecht U . The mammalian circadian timing system: organization and coordination of central and peripheral clocks[J]. Annu Rev Physiol, 2010,72:517-549.
doi: 10.1146/annurev-physiol-021909-135821 |
[2] |
Fuhr L, Abreu M, Pett P , et al. Circadian systems biology: when time matters[J]. Comput Struct Biotechnol J, 2015,13:417-426.
doi: 10.1016/j.csbj.2015.07.001 pmid: 4534520 |
[3] |
Borgs L, Beukelaers P, Vandenbosch R , et al. Cell “circadian” cycle: new role for mammalian core clock genes[J]. Cell Cycle, 2009,8(6):832-837.
doi: 10.4161/cc.8.6.7869 pmid: 19221497 |
[4] |
Maury E, Hong HK, Bass J . Circadian disruption in the pathogenesis of metabolic syndrome[J]. Diabetes Metab, 2014,40(5):338-346.
doi: 10.1016/j.diabet.2013.12.005 |
[5] |
Mazzoccoli G, Pazienza V, Vinciguerra M . Clock genes and clock-controlled genes in the regulation of metabolic rhythms[J]. Chronobiol Int, 2012,29(3):227-251.
doi: 10.3109/07420528.2012.658127 |
[6] |
Jagannath A, Taylor L, Wakaf Z , et al. The genetics of circadian rhythms, sleep and health[J]. Hum Mol Genet, 2017,26(R2):R128-R138.
doi: 10.1093/hmg/ddx240 pmid: 28977444 |
[7] |
Khaper N, Bailey CDC, Ghugre NR , et al. Implications of disturbances in circadian rhythms for cardiovascular health: a new frontier in free radical biology[J]. Free Radic Biol Med, 2018,119:85-92.
doi: 10.1016/j.freeradbiomed.2017.11.006 pmid: 29146117 |
[8] |
Samsa WE, Vasanji A, Midura RJ , et al. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype[J]. Bone, 2016,84:194-203.
doi: 10.1016/j.bone.2016.01.006 pmid: 26789548 |
[9] |
Komoto S, Kondo H, Fukuta O , et al. Comparison of β-adrenergic and glucocorticoid signaling on clock gene and osteoblast-related gene expressions in human osteoblast[J]. Chronobiol Int, 2012,29(1):66-74.
doi: 10.3109/07420528.2011.636496 pmid: 17019725 |
[10] |
Song C, Wang J, Kim B , et al. Insights into the role of circadian rhythms in bone metabolism: a promising intervention target[J]. Biomed Res Int, 2018,2018:9156478.
doi: 10.1155/2018/9156478 |
[11] |
Reppert SM, Weaver DR . Coordination of circadian timing in mammals[J]. Nature, 2002,418(6901):935-941.
doi: 10.1038/nature00965 pmid: 12198538 |
[12] |
Yoo SH, Yamazaki S, Lowrey PL , et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues[J]. Proc Natl Acad Sci U S A, 2004,101(15):5339-5346.
doi: 10.1073/pnas.0308709101 pmid: 14963227 |
[13] |
Lowrey PL, Takahashi JS . Mammalian circadian biology: elucidating genome-wide levels of temporal organization[J]. Annu Rev Genomics Hum Genet, 2004,5:407-441.
doi: 10.1146/annurev.genom.5.061903.175925 pmid: 15485355 |
[14] |
Takahashi JS . Molecular components of the circadian clock in mammals[J]. Diabetes Obes Metab, 2015,17(Suppl 1):6-11.
doi: 10.1111/dom.12514 pmid: 26332962 |
[15] |
Luo W, Li Y, Tang CH , et al. CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila[J]. Genes Dev, 2012,26(22):2536-2549.
doi: 10.1101/gad.200584.112 pmid: 23154984 |
[16] |
Robles MS, Humphrey SJ, Mann M . Phosphorylation is a central mechanism for circadian control of metabolism and physiology[J]. Cell Metab, 2017,25(1):118-127.
doi: 10.1016/j.cmet.2016.10.004 pmid: 27818261 |
[17] |
Preitner N, Damiola F, Lopez-Molina L , et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator[J]. Cell, 2002,110(2):251-260.
doi: 10.1016/S0092-8674(02)00825-5 pmid: 12150932 |
[18] |
Murray IR, West CC, Hardy WR , et al. Natural history of mesenchymal stem cells, from vessel walls to culture vessels[J]. Cell Mol Life Sci, 2014,71(8):1353-1374.
doi: 10.1007/s00018-013-1462-6 pmid: 24158496 |
[19] |
Weger M, Diotel N, Dorsemans AC , et al. Stem cells and the circadian clock[J]. Dev Biol, 2017,431(2):111-123.
doi: 10.1016/j.ydbio.2017.09.012 pmid: 28899666 |
[20] |
Boucher H, Vanneaux V, Domet T , et al. Circadian clock genes modulate human bone marrow mesenchymal stem cell differentiation, migration and cell cycle[J]. PLoS One, 2016,11(1):e0146674.
doi: 10.1371/journal.pone.0146674 pmid: 4704833 |
[21] |
Meyer T, Kneissel M, Mariani J , et al. In vitro and in vivo evidence for orphan nuclear receptor RORalpha function in bone metabolism[J]. Proc Natl Acad Sci U S A, 2000,97(16):9197-9202.
doi: 10.1073/pnas.150246097 pmid: 10900268 |
[22] |
He Y, Lin F, Chen Y , et al. Overexpression of the circadian clock gene Rev-erbα affects murine bone mesenchymal stem cell proliferation and osteogenesis[J]. Stem Cells Dev, 2015,24(10):1194-1204.
doi: 10.1089/scd.2014.0437 pmid: 25539035 |
[23] |
Li X, Liu N, Wang Y , et al. Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 cooperates with glycogen synthase kinase-3β to regulate osteogenesis of bone-marrow mesenchymal stem cells in type 2 diabetes[J]. Mol Cell Endocrinol, 2017,440:93-105.
doi: 10.1016/j.mce.2016.10.001 |
[24] |
Sahar S, Zocchi L, Kinoshita C , et al. Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation[J]. PLoS One, 2010,5(1):e8561.
doi: 10.1371/journal.pone.0008561 pmid: 2797305 |
[25] |
Marcheva B, Ramsey KM, Buhr ED , et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J]. Nature, 2010,466(7306):627-631.
doi: 10.1038/nature09253 pmid: 2920067 |
[26] |
Sato F, Sato H, Jin D , et al. Smad3 and Snail show circadian expression in human gingival fibroblasts, human mesenchymal stem cell, and in mouse liver[J]. Biochem Biophys Res Commun, 2012,419(2):441-446.
doi: 10.1016/j.bbrc.2012.02.076 pmid: 22382019 |
[27] |
Spengler ML, Kuropatwinski KK, Comas M , et al. Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription[J]. Proc Natl Acad Sci U S A, 2012,109(37):E2457-E2465.
doi: 10.1073/pnas.1206274109 |
[28] |
龙洁, 田卫东, 郑晓辉 , 等. 牵张成骨对山羊下颌骨成骨细胞增殖节律的影响[J]. 华西口腔医学杂志, 2003,21(2):144-146, 152.
doi: 10.3321/j.issn:1000-1182.2003.02.020 |
Long J, Tian WD, Zheng XH , et al. Effect of distraction osteogenesis on circadian rhythm of proliferation index of mandibular osteoblast in goat[J]. West Chin J Stomatol, 2003,21(2):144-146, 152.
doi: 10.3321/j.issn:1000-1182.2003.02.020 |
|
[29] |
Wang Y, Nizkorodov A, Riemenschneider K , et al. Impaired bone formation in Pdia3 deficient mice[J]. PLoS One, 2014,9(11):e112708.
doi: 10.1371/journal.pone.0112708 pmid: 25405762 |
[30] |
Santana-Codina N, Carretero R, Sanz-Pamplona R , et al. A transcriptome-proteome integrated network identifies endoplasmic reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis[J]. Mol Cell Proteomics, 2013,12(8):2111-2125.
doi: 10.1074/mcp.M112.022772 |
[31] |
Yuan G, Hua B, Yang Y , et al. The circadian gene clock regulates bone formation via PDIA3[J]. J Bone Miner Res, 2017,32(4):861-871.
doi: 10.1002/jbmr.3046 pmid: 27883226 |
[32] |
Fu L, Patel MS, Karsenty G . The circadian modulation of leptin-controlled bone formation[J]. Prog Brain Res, 2006,153:177-188.
doi: 10.1016/S0079-6123(06)53010-9 |
[33] |
Hirai T . Regulation of clock genes by adrenergic receptor signaling in osteoblasts[J]. Neurochem Res, 2018,43(1):120-126.
doi: 10.1007/s11064-017-2365-y pmid: 28752422 |
[34] |
Hirai T, Tanaka K, Togari A . β-adrenergic receptor signaling regulates Ptgs2 by driving circadian gene expression in osteoblasts[J]. J Cell Sci, 2014,127(Pt 17):3711-3719.
doi: 10.1242/jcs.148148 pmid: 24994935 |
[35] |
Hirai T, Tanaka K, Togari A . α1-adrenergic receptor signaling in osteoblasts regulates clock genes and bone morphogenetic protein 4 expression through up-regulation of the transcriptional factor nuclear factor IL-3 (Nfil3)/E4 promoter-binding protein 4 (E4BP4)[J]. J Biol Chem, 2014,289(24):17174-17183.
doi: 10.1074/jbc.M113.546135 |
[36] |
Takeda S, Elefteriou F, Levasseur R , et al. Leptin regulates bone formation via the sympathetic nervous system[J]. Cell, 2002,111(3):305-317.
doi: 10.1016/S0092-8674(02)01049-8 pmid: 12419242 |
[37] |
Min HY, Kim KM, Wee G , et al. Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells[J]. Life Sci, 2016,162:41-46.
doi: 10.1016/j.lfs.2016.08.002 pmid: 27506892 |
[38] |
Cappellen D, Luong-Nguyen NH, Bongiovanni S , et al. Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B[J]. J Biol Chem, 2002,277(24):21971-21982.
doi: 10.1074/jbc.M200434200 pmid: 11923298 |
[39] |
Xu C, Ochi H, Fukuda T , et al. Circadian clock regulates bone resorption in mice[J]. J Bone Miner Res, 2016,31(7):1344-1355.
doi: 10.1002/jbmr.2803 pmid: 26841172 |
[40] |
Fujihara Y, Kondo H, Noguchi T , et al. Glucocorticoids mediate circadian timing in peripheral osteoclasts resulting in the circadian expression rhythm of osteoclast-related genes[J]. Bone, 2014,61:1-9.
doi: 10.1016/j.bone.2013.12.026 pmid: 24389417 |
[41] |
Kearns AE, Khosla S, Kostenuik PJ . Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease[J]. Endocr Rev, 2008,29(2):155-192.
doi: 10.1210/er.2007-0014 |
[1] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[2] | 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580. |
[3] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[4] | 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271. |
[5] | 安宁,李姣,梅志丹. 骨保护素/核因子-κB受体活化因子/核因子κB-受体活化因子配体信号分子调控牙萌出的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 116-120. |
[6] | 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744. |
[7] | 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527. |
[8] | 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660. |
[9] | 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668. |
[10] | 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546. |
[11] | 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615. |
[12] | 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616-620. |
[13] | 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31. |
[14] | 朱俊瑾,周佳琦,伍颖颖. 哺乳动物雷帕霉素靶蛋白复合物1介导的自噬对骨代谢的调控[J]. 国际口腔医学杂志, 2020, 47(1): 84-89. |
[15] | 卢可心,张迪亚,吴燕岷. 蛋白酶激活受体在牙周组织细胞中相关作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 657-662. |
|