国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (3): 341-346.doi: 10.7518/gjkq.2021037
Zhou Feng1(),Chen Ye1,Chen Chen2,Zhang Yining2,Geng Ruiman2,Liu Ji2()
摘要:
牙周炎是发生在牙周组织的炎症性破坏性疾病。牙周炎由牙菌斑作为始动因子,介导氧化应激和继发性炎症反应,导致组织破坏、牙槽骨吸收,最终牙齿松动、脱落。沉默信息调节因子1(SIRT1)作为重要的长寿因子,在抗老化、抵抗应激、介导凋亡与自噬和调控炎症反应过程中扮演重要的角色。近年来一些研究从氧化应激、炎症因子通路及全身疾病等多角度入手,探究SIRT1与牙周炎发生发展之间的关系。本文就SIRT1与牙周炎之间的关系、具体机制、临床应用前景作一综述,为牙周炎的治疗提供参考与借鉴。
中图分类号:
[1] |
Demmer RT, Papapanou PN. Epidemiologic patterns of chronic and aggressive periodontitis[J]. Periodontol 2000, 2010,53:28-44.
doi: 10.1111/prd.2010.53.issue-1 |
[2] |
Kinane DF, Preshaw PM, Loos BG, et al. Host-response: understanding the cellular and molecular mechanisms of host-microbial interactions: consensus of the Seventh European Workshop on Periodontology[J]. J Clin Periodontol, 2011,38(Suppl 11):44-48.
doi: 10.1111/jcpe.2011.38.issue-s11 |
[3] |
Kumar PS. From focal sepsis to periodontal medicine: a century of exploring the role of the oral microbiome in systemic disease[J]. J Physiol, 2017,595(2):465-476.
doi: 10.1113/tjp.2017.595.issue-2 |
[4] |
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance[J]. Annu Rev Pathol, 2010,5:253-295.
doi: 10.1146/annurev.pathol.4.110807.092250 |
[5] |
Zainabadi K, Liu CJ, Guarente L. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2[J]. PLoS One, 2017,12(5):e0178520.
doi: 10.1371/journal.pone.0178520 |
[6] | Zhang ZJ, Lin JL, Nisar M, et al. The Sirt1/P53 A-xis in diabetic intervertebral disc degeneration pathogenesis and therapeutics[J]. Oxid Med Cell Longev, 2019,2019:7959573. |
[7] | Yao S, Mahmud Z, Sachini N, et al. Characterization of FOXO acetylation[J]. Methods Mol Biol, 2019,1890:77-90. |
[8] | Liu H, Sheng M, Liu Y, et al. Expression of SIRT1 and oxidative stress in diabetic dry eye[J]. Int J Clin Exp Pathol, 2015,8(6):7644-7653. |
[9] |
Rajendrasozhan S, Yang SR, Kinnula VL, et al. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2008,177(8):861-870.
doi: 10.1164/rccm.200708-1269OC |
[10] |
Waddington RJ, Moseley R, Embery G. Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases[J]. Oral Dis, 2000,6(3):138-151.
pmid: 10822357 |
[11] |
Hwang JW, Yao HW, Caito S, et al. Redox regulation of SIRT1 in inflammation and cellular senescence[J]. Free Radic Biol Med, 2013,61:95-110.
doi: 10.1016/j.freeradbiomed.2013.03.015 |
[12] |
Akhtar MJ, Ahamed M, Alhadlaq HA, et al. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: potential implications in ROS associated degenerative disorders[J]. Biochim Biophys Acta Gen Subj, 2017,1861(4):802-813.
doi: 10.1016/j.bbagen.2017.01.018 |
[13] | Nonaka K, Bando M, Sakamoto E, et al. 6-shogaol inhibits advanced glycation end-products-induced IL-6 and ICAM-1 expression by regulating oxidative responses in human gingival fibroblasts[J]. Mo-lecules, 2019,24(20):E3705. |
[14] |
Bao X, Zhao J, Sun J, et al. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease[J]. ACS Nano, 2018,12(9):8882-8892.
doi: 10.1021/acsnano.8b04022 |
[15] |
Kuang YC, Hu B, Feng G, et al. Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells[J]. Biogerontology, 2020,21(1):13-27.
doi: 10.1007/s10522-019-09838-x |
[16] |
Ha H, Kwak HB, Lee SW, et al. Reactive oxygen species mediate RANK signaling in osteoclasts[J]. Exp Cell Res, 2004,301(2):119-127.
doi: 10.1016/j.yexcr.2004.07.035 |
[17] |
Kanzaki H, Wada S, Narimiya T, et al. Pathways that regulate ROS scavenging enzymes, and their role in defense against tissue destruction in perio-dontitis[J]. Front Physiol, 2017,8:351.
doi: 10.3389/fphys.2017.00351 |
[18] |
Park GJ, Kim YS, Kang KL, et al. Effects of sirtuin 1 activation on nicotine and lipopolysaccharide-induced cytotoxicity and inflammatory cytokine production in human gingival fibroblasts[J]. J Periodontal Res, 2013,48(4):483-492.
doi: 10.1111/jre.12030 |
[19] |
Corrêa MG, Absy S, Tenenbaum H, et al. Resveratrol attenuates oxidative stress during experimental periodontitis in rats exposed to cigarette smoke inhalation[J]. J Periodontal Res, 2019,54(3):225-232.
doi: 10.1111/jre.2019.54.issue-3 |
[20] |
Tamaki N, Cristina Orihuela-Campos R, Inagaki Y, et al. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model[J]. Free Radic Biol Med, 2014,75:222-229.
doi: 10.1016/j.freeradbiomed.2014.07.034 |
[21] |
Joo MS, Kim WD, Lee KY, et al. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550[J]. Mol Cell Biol, 2016,36(14):1931-1942.
doi: 10.1128/MCB.00118-16 |
[22] |
D’Aiuto F, Nibali L, Parkar M, et al. Oxidative stress, systemic inflammation, and severe periodontitis[J]. J Dent Res, 2010,89(11):1241-1246.
doi: 10.1177/0022034510375830 |
[23] |
Tamaki N, Hayashida H, Fukui M, et al. Oxidative stress and antibody levels to periodontal bacteria in adults: the Nagasaki islands study[J]. Oral Dis, 2014,20(3):e49-e56.
doi: 10.1111/odi.12127 |
[24] |
Cueno ME, Seki K, Ochiai K, et al. Periodontal di-sease level-butyric acid putatively contributes to the ageing blood: a proposed link between periodontal diseases and the ageing process[J]. Mech Ageing Dev, 2017,162:100-105.
doi: 10.1016/j.mad.2017.01.005 |
[25] |
Liu J, Wang YX, Meng HX, et al. Butyrate rather than LPS subverts gingival epithelial homeostasis by downregulation of intercellular junctions and triggering pyroptosis[J]. J Clin Periodontol, 2019,46(9):894-907.
doi: 10.1111/jcpe.v46.9 |
[26] |
Caribé PMV, Villar CC, Romito GA, et al. Influence of the treatment of periodontal disease in serum concentration of sirtuin 1 and mannose-binding lectin[J]. J Periodontol, 2020,91(7):900-905.
doi: 10.1002/jper.v91.7 |
[27] |
Morimoto Y, Kawahara KI, Tancharoen S, et al. Tumor necrosis factor-alpha stimulates gingival epithelial cells to release high mobility-group box 1[J]. J Periodontal Res, 2008,43(1):76-83.
doi: 10.1111/jre.2008.43.issue-1 |
[28] |
Kim YS, Lee YM, Park JS, et al. SIRT1 modulates high-mobility group box 1-induced osteoclastogenic cytokines in human periodontal ligament cells[J]. J Cell Biochem, 2010,111(5):1310-1320.
doi: 10.1002/jcb.22858 |
[29] |
Park YD, Kim YS, Jung YM, et al. Porphyromonas gingivalis lipopolysaccharide regulates interleukin(IL)-17 and IL-23 expression via SIRT1 modulation in human periodontal ligament cells[J]. Cytokine, 2012,60(1):284-293.
doi: 10.1016/j.cyto.2012.05.021 |
[30] |
Kim SR, Lee KS, Park SJ, et al. Involvement of sirtuin 1 in airway inflammation and hyperresponsiveness of allergic airway disease[J]. J Allergy Clin Immunol, 2010,125(2):449-460.e14.
doi: 10.1016/j.jaci.2009.08.009 |
[31] |
Liu FC, Day YJ, Liou JT, et al. Sirtinol attenuates hepatic injury and pro-inflammatory cytokine production following trauma-hemorrhage in male Spra-gue-Dawley rats[J]. Acta Anaesthesiol Scand, 2008,52(5):635-640.
doi: 10.1111/j.1399-6576.2008.01592.x |
[32] |
Li KX, Lv G, Pan LF. Sirt1 alleviates LPS induced inflammation of periodontal ligament fibroblasts via downregulation of TLR4[J]. Int J Biol Macromol, 2018,119:249-254.
doi: 10.1016/j.ijbiomac.2018.07.099 |
[33] | Chin YT, Hsieh MT, Lin CY, et al. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-β-glucoside isolated from polygoni multiflori ameliorates the development of perio-dontitis[J]. Mediators Inflamm, 2016,2016:6953459. |
[34] |
Minagawa T, Okui T, Takahashi N, et al. Resveratrol suppresses the inflammatory responses of human gingival epithelial cells in a SIRT1 independent manner[J]. J Periodontal Res, 2015,50(5):586-593.
doi: 10.1111/jre.12238 |
[35] |
Slots J. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017,75(1):7-23.
doi: 10.1111/prd.12221 |
[36] |
Cullinan MP, Seymour GJ. Periodontal disease and systemic illness: will the evidence ever be enough[J]. Periodontol 2000, 2013,62(1):271-286.
doi: 10.1111/prd.2013.62.issue-1 |
[37] |
Pallasch TJ, Slots J. Antibiotic prophylaxis and the medically compromised patient[J]. Periodontol 2000, 1996,10:107-138.
pmid: 9567940 |
[38] |
Nakajima M, Arimatsu K, Minagawa T, et al. Brazi-lian propolis mitigates impaired glucose and lipid metabolism in experimental periodontitis in mice[J]. BMC Complement Altern Med, 2016,16(1):329.
doi: 10.1186/s12906-016-1305-8 |
[39] |
Liang F, Kume S, Koya D. SIRT1 and insulin resistance[J]. Nat Rev Endocrinol, 2009,5(7):367-373.
doi: 10.1038/nrendo.2009.101 |
[40] |
Zheng Y, Dong C, Yang JL, et al. Exosomal micro-RNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol, 2019,234(11):20662-20674.
doi: 10.1002/jcp.28671 pmid: WOS:000478018200133 |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[3] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[4] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[5] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[6] | 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462. |
[7] | 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262. |
[8] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[9] | 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126. |
[10] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[11] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[12] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[13] | 叶玉琳,江莉婷,高益鸣. 舍格伦综合征唾液腺中自噬现象的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 556-560. |
[14] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[15] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
|