国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (3): 341-346.doi: 10.7518/gjkq.2021037

• 综述 • 上一篇    下一篇

沉默信息调节因子1调控牙周炎发生发展的机制

周丰1(),陈野1,陈晨2,张奕宁2,耿瑞蔓2,刘戟2()   

  1. 1.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医学院 成都 610041
    2.四川大学华西基础医学与法医学院 成都 610041
  • 收稿日期:2020-08-16 修回日期:2020-12-24 出版日期:2021-05-01 发布日期:2021-05-14
  • 通讯作者: 刘戟
  • 作者简介:周丰,学士,Email: 280606885@qq.com

Mechanism of sirtuin 1 in regulating periodontitis

Zhou Feng1(),Chen Ye1,Chen Chen2,Zhang Yining2,Geng Ruiman2,Liu Ji2()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2. West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, China
  • Received:2020-08-16 Revised:2020-12-24 Online:2021-05-01 Published:2021-05-14
  • Contact: Ji Liu

摘要:

牙周炎是发生在牙周组织的炎症性破坏性疾病。牙周炎由牙菌斑作为始动因子,介导氧化应激和继发性炎症反应,导致组织破坏、牙槽骨吸收,最终牙齿松动、脱落。沉默信息调节因子1(SIRT1)作为重要的长寿因子,在抗老化、抵抗应激、介导凋亡与自噬和调控炎症反应过程中扮演重要的角色。近年来一些研究从氧化应激、炎症因子通路及全身疾病等多角度入手,探究SIRT1与牙周炎发生发展之间的关系。本文就SIRT1与牙周炎之间的关系、具体机制、临床应用前景作一综述,为牙周炎的治疗提供参考与借鉴。

关键词: 沉默信息调节因子1, 牙周炎, 氧化应激, 炎症, 自噬

Abstract:

Periodontitis is a species of inflammatory, destructive diseases that occur in periodontal tissues. As the starting factor of periodontitis, dental plaque mediates oxidative stress and secondary inflammation, which leads to tissue destruction, alveolar bone absorption, and tooth loosening and loss. Sirtuin 1 (SIRT1), an important longevity factor, plays a vital role in antiaging and antistress applications, mediating apoptosis, autophagy, and regulating inflammation reaction. In recent years, several studies explored the relationship between SIRT1 and the occurrence and development of periodontitis from multiple perspectives, such as oxidative stress, inflammatory factors and pathways, and systemic diseases. This study reviews the relationship between SIRT1 and periodontitis, the possible mechanism, and its future clinical application to provide reference.

Key words: sirtuin 1, periodontitis, oxidative stress, inflammation, autophagy

中图分类号: 

  • R782
[1] Demmer RT, Papapanou PN. Epidemiologic patterns of chronic and aggressive periodontitis[J]. Periodontol 2000, 2010,53:28-44.
doi: 10.1111/prd.2010.53.issue-1
[2] Kinane DF, Preshaw PM, Loos BG, et al. Host-response: understanding the cellular and molecular mechanisms of host-microbial interactions: consensus of the Seventh European Workshop on Periodontology[J]. J Clin Periodontol, 2011,38(Suppl 11):44-48.
doi: 10.1111/jcpe.2011.38.issue-s11
[3] Kumar PS. From focal sepsis to periodontal medicine: a century of exploring the role of the oral microbiome in systemic disease[J]. J Physiol, 2017,595(2):465-476.
doi: 10.1113/tjp.2017.595.issue-2
[4] Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance[J]. Annu Rev Pathol, 2010,5:253-295.
doi: 10.1146/annurev.pathol.4.110807.092250
[5] Zainabadi K, Liu CJ, Guarente L. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2[J]. PLoS One, 2017,12(5):e0178520.
doi: 10.1371/journal.pone.0178520
[6] Zhang ZJ, Lin JL, Nisar M, et al. The Sirt1/P53 A-xis in diabetic intervertebral disc degeneration pathogenesis and therapeutics[J]. Oxid Med Cell Longev, 2019,2019:7959573.
[7] Yao S, Mahmud Z, Sachini N, et al. Characterization of FOXO acetylation[J]. Methods Mol Biol, 2019,1890:77-90.
[8] Liu H, Sheng M, Liu Y, et al. Expression of SIRT1 and oxidative stress in diabetic dry eye[J]. Int J Clin Exp Pathol, 2015,8(6):7644-7653.
[9] Rajendrasozhan S, Yang SR, Kinnula VL, et al. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2008,177(8):861-870.
doi: 10.1164/rccm.200708-1269OC
[10] Waddington RJ, Moseley R, Embery G. Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases[J]. Oral Dis, 2000,6(3):138-151.
pmid: 10822357
[11] Hwang JW, Yao HW, Caito S, et al. Redox regulation of SIRT1 in inflammation and cellular senescence[J]. Free Radic Biol Med, 2013,61:95-110.
doi: 10.1016/j.freeradbiomed.2013.03.015
[12] Akhtar MJ, Ahamed M, Alhadlaq HA, et al. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: potential implications in ROS associated degenerative disorders[J]. Biochim Biophys Acta Gen Subj, 2017,1861(4):802-813.
doi: 10.1016/j.bbagen.2017.01.018
[13] Nonaka K, Bando M, Sakamoto E, et al. 6-shogaol inhibits advanced glycation end-products-induced IL-6 and ICAM-1 expression by regulating oxidative responses in human gingival fibroblasts[J]. Mo-lecules, 2019,24(20):E3705.
[14] Bao X, Zhao J, Sun J, et al. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease[J]. ACS Nano, 2018,12(9):8882-8892.
doi: 10.1021/acsnano.8b04022
[15] Kuang YC, Hu B, Feng G, et al. Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells[J]. Biogerontology, 2020,21(1):13-27.
doi: 10.1007/s10522-019-09838-x
[16] Ha H, Kwak HB, Lee SW, et al. Reactive oxygen species mediate RANK signaling in osteoclasts[J]. Exp Cell Res, 2004,301(2):119-127.
doi: 10.1016/j.yexcr.2004.07.035
[17] Kanzaki H, Wada S, Narimiya T, et al. Pathways that regulate ROS scavenging enzymes, and their role in defense against tissue destruction in perio-dontitis[J]. Front Physiol, 2017,8:351.
doi: 10.3389/fphys.2017.00351
[18] Park GJ, Kim YS, Kang KL, et al. Effects of sirtuin 1 activation on nicotine and lipopolysaccharide-induced cytotoxicity and inflammatory cytokine production in human gingival fibroblasts[J]. J Periodontal Res, 2013,48(4):483-492.
doi: 10.1111/jre.12030
[19] Corrêa MG, Absy S, Tenenbaum H, et al. Resveratrol attenuates oxidative stress during experimental periodontitis in rats exposed to cigarette smoke inhalation[J]. J Periodontal Res, 2019,54(3):225-232.
doi: 10.1111/jre.2019.54.issue-3
[20] Tamaki N, Cristina Orihuela-Campos R, Inagaki Y, et al. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model[J]. Free Radic Biol Med, 2014,75:222-229.
doi: 10.1016/j.freeradbiomed.2014.07.034
[21] Joo MS, Kim WD, Lee KY, et al. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550[J]. Mol Cell Biol, 2016,36(14):1931-1942.
doi: 10.1128/MCB.00118-16
[22] D’Aiuto F, Nibali L, Parkar M, et al. Oxidative stress, systemic inflammation, and severe periodontitis[J]. J Dent Res, 2010,89(11):1241-1246.
doi: 10.1177/0022034510375830
[23] Tamaki N, Hayashida H, Fukui M, et al. Oxidative stress and antibody levels to periodontal bacteria in adults: the Nagasaki islands study[J]. Oral Dis, 2014,20(3):e49-e56.
doi: 10.1111/odi.12127
[24] Cueno ME, Seki K, Ochiai K, et al. Periodontal di-sease level-butyric acid putatively contributes to the ageing blood: a proposed link between periodontal diseases and the ageing process[J]. Mech Ageing Dev, 2017,162:100-105.
doi: 10.1016/j.mad.2017.01.005
[25] Liu J, Wang YX, Meng HX, et al. Butyrate rather than LPS subverts gingival epithelial homeostasis by downregulation of intercellular junctions and triggering pyroptosis[J]. J Clin Periodontol, 2019,46(9):894-907.
doi: 10.1111/jcpe.v46.9
[26] Caribé PMV, Villar CC, Romito GA, et al. Influence of the treatment of periodontal disease in serum concentration of sirtuin 1 and mannose-binding lectin[J]. J Periodontol, 2020,91(7):900-905.
doi: 10.1002/jper.v91.7
[27] Morimoto Y, Kawahara KI, Tancharoen S, et al. Tumor necrosis factor-alpha stimulates gingival epithelial cells to release high mobility-group box 1[J]. J Periodontal Res, 2008,43(1):76-83.
doi: 10.1111/jre.2008.43.issue-1
[28] Kim YS, Lee YM, Park JS, et al. SIRT1 modulates high-mobility group box 1-induced osteoclastogenic cytokines in human periodontal ligament cells[J]. J Cell Biochem, 2010,111(5):1310-1320.
doi: 10.1002/jcb.22858
[29] Park YD, Kim YS, Jung YM, et al. Porphyromonas gingivalis lipopolysaccharide regulates interleukin(IL)-17 and IL-23 expression via SIRT1 modulation in human periodontal ligament cells[J]. Cytokine, 2012,60(1):284-293.
doi: 10.1016/j.cyto.2012.05.021
[30] Kim SR, Lee KS, Park SJ, et al. Involvement of sirtuin 1 in airway inflammation and hyperresponsiveness of allergic airway disease[J]. J Allergy Clin Immunol, 2010,125(2):449-460.e14.
doi: 10.1016/j.jaci.2009.08.009
[31] Liu FC, Day YJ, Liou JT, et al. Sirtinol attenuates hepatic injury and pro-inflammatory cytokine production following trauma-hemorrhage in male Spra-gue-Dawley rats[J]. Acta Anaesthesiol Scand, 2008,52(5):635-640.
doi: 10.1111/j.1399-6576.2008.01592.x
[32] Li KX, Lv G, Pan LF. Sirt1 alleviates LPS induced inflammation of periodontal ligament fibroblasts via downregulation of TLR4[J]. Int J Biol Macromol, 2018,119:249-254.
doi: 10.1016/j.ijbiomac.2018.07.099
[33] Chin YT, Hsieh MT, Lin CY, et al. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-β-glucoside isolated from polygoni multiflori ameliorates the development of perio-dontitis[J]. Mediators Inflamm, 2016,2016:6953459.
[34] Minagawa T, Okui T, Takahashi N, et al. Resveratrol suppresses the inflammatory responses of human gingival epithelial cells in a SIRT1 independent manner[J]. J Periodontal Res, 2015,50(5):586-593.
doi: 10.1111/jre.12238
[35] Slots J. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017,75(1):7-23.
doi: 10.1111/prd.12221
[36] Cullinan MP, Seymour GJ. Periodontal disease and systemic illness: will the evidence ever be enough[J]. Periodontol 2000, 2013,62(1):271-286.
doi: 10.1111/prd.2013.62.issue-1
[37] Pallasch TJ, Slots J. Antibiotic prophylaxis and the medically compromised patient[J]. Periodontol 2000, 1996,10:107-138.
pmid: 9567940
[38] Nakajima M, Arimatsu K, Minagawa T, et al. Brazi-lian propolis mitigates impaired glucose and lipid metabolism in experimental periodontitis in mice[J]. BMC Complement Altern Med, 2016,16(1):329.
doi: 10.1186/s12906-016-1305-8
[39] Liang F, Kume S, Koya D. SIRT1 and insulin resistance[J]. Nat Rev Endocrinol, 2009,5(7):367-373.
doi: 10.1038/nrendo.2009.101
[40] Zheng Y, Dong C, Yang JL, et al. Exosomal micro-RNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol, 2019,234(11):20662-20674.
doi: 10.1002/jcp.28671 pmid: WOS:000478018200133
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[3] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[4] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[5] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[6] 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462.
[7] 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262.
[8] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[9] 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126.
[10] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[11] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[12] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[13] 叶玉琳,江莉婷,高益鸣. 舍格伦综合征唾液腺中自噬现象的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 556-560.
[14] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[15] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .