国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (3): 249-254.doi: 10.7518/gjkq.2018.03.001
• 专家论坛 • 下一篇
林云锋, 李松航
Lin Yunfeng, Li Songhang
摘要: DNA折纸技术是近年来新提出的一种DNA自组装方法,可设计特定的DNA序列,遵循碱基互补配对原则来构建出更为复杂的纳米结构与纳米图案。近期发现通过DNA折纸技术构建出的DNA四面体纳米结构(TDN)在干细胞领域有着巨大应用潜能。本文就TDN结构、生物学特性以及在干细胞领域的应用进行综述。
中图分类号:
[1] Zhang Y, Tu J, Wang D, et al.Programmable and multifunctional DNA-based materials for biomedical applications[J]. Adv Mater, 2018. doi:10.1002/adma.201703658. [2] Pei H, Zuo X, Zhu D, et al.Functional DNA nanos-tructures for theranostic applications[J]. Acc Chem Res, 2014, 47(2):550-559. [3] Hu Y, Cecconello A, Idili A, et al.Triplex DNA nanostructures: from basic properties to applications[J]. Angew Chem Int Ed Engl, 2017, 56(48):15210-15233. [4] Liang L, Li J, Li Q, et al.Single-particle tracking and modulation of cell entry pathways of a tetrahe-dral DNA nanostructure in live cells[J]. Angew Chem Int Ed Engl, 2014, 53(30):7745-7750. [5] Dong S, Zhao R, Zhu J, et al.Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus[J]. ACS Appl Mater Interfaces, 2015, 7(16):8834-8842. [6] Peng Q, Shao XR, Xie J, et al.Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells[J]. ACS Appl Mater Interfaces, 2016, 8(20):12733-12739. [7] Shi S, Lin S, Li Y, et al.Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes[J]. Chem Commun (Camb), 2018, 54(11):1327-1330. [8] Li Q, Zhao D, Shao X, et al.Aptamer-modified te-trahedral DNA nanostructure for tumor-targeted drug delivery[J]. ACS Appl Mater Interfaces, 2017, 9(42): 36695-36701. [9] Shao X, Lin S, Peng Q, et al.DNA Nanostructures: tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chon-drocyte phenotype and proliferation (small 12/2017)[J]. Small, 2017, 13(12). doi:10.1002/smll.01602770. [10] Xie X, Shao X, Ma W, et al.Overcoming drug-resis-tant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures[J]. Nanoscale, 2018. doi:10.1002/adma.201703658. [11] Jiang D, Sun Y, Li J, et al.Multiple-armed tetrahedral DNA nanostructures for tumortargeting, dualmoda-lity [12] Li J, Pei H, Zhu B, et al.Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleo-tides[J]. ACS Nano, 2011, 5(11):8783-8789. [13] Petkar KC, Chavhan SS, Agatonovik-Kustrin S, et al.Nanostructured materials in drug and gene delivery: a review of the state of the art[J]. Crit Rev Ther Drug Carrier Syst, 2011, 28(2):101-164. [14] Tian T, Zhang T, Zhou T, et al.Synthesis of an ethy-leneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle[J]. Nanoscale, 2017, 9(46):18402-18412. [15] Zhang Q, Lin S, Shi S, et al.Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostruc-tures via the modulation of macrophage responses[J]. ACS Appl Mater Interfaces, 2018, 10(4):3421-3430. [16] Dey D, Chaskar S, Athavale N, et al.Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238[J]. Phytother Res, 2014, 28(10):1479-1485. [17] Shi S, Peng Q, Shao X, et al.Self-assembled tetrahe-dral DNA nanostructures promote adiposederived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway[J]. ACS Appl Mater Interfaces, 2016, 8(30):19353-19363. [18] Riera KM, Rothfusz NE, Wilusz RE, et al.Interleu-kin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migra-tion[J]. Arthritis Res Ther, 2011, 13(6):R187. [19] He Z, Hua J, Song Z.Concise review: mesenchymal stem cells ameliorate tissue injury via secretion of tumor necrosis factor-α stimulated protein/gene 6[J]. Stem Cells Int, 2014, 2014:761091. [20] Lee TS, Lin JJ, Huo YN, et al.Progesterone inhibits endothelial cell migration through suppression of the Rho activity mediated by cSrc activation[J]. J Cell Biochem, 2015, 116(7):1411-1418. [21] McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004, 6(4):483-495. [22] Lin MN, Shang DS, Sun W, et al.Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells thr-ough human brain microvascular endothelial cell monolayers[J]. Brain Res, 2013, 1513:1-8. [23] Habets GG, Scholtes EH, Zuydgeest D, et al.Identi-fication of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP ex-changers for Rho-like proteins[J]. Cell, 1994, 77(4): 537-549. [24] Liu C, Zhu C, Li J, et al.The effect of the fibre orien-tation of electrospun scaffolds on the matrix produc-tion of rabbit annulus fibrosus-derived stem cells[J]. Bone Res, 2015, 3:15012. [25] Ahmadzadeh A, Norozi F, Shahrabi S, et al.Wnt/β- catenin signaling in bone marrow niche[J]. Cell Tissue Res, 2016, 363(2):321-335. [26] MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling[J]. Cold Spring Harb Perspect Biol, 2012, 4(12). doi:10.1101/cshperspect.a007880. [27] Zhang F, Luo K, Rong Z, et al.Periostin upregulates Wnt/β-catenin signaling to promote the osteogenesis of CTLA4-modified human bone marrow-mesenchy-mal stem cells[J]. Sci Rep, 2017, 7:41634. [28] Ma W, Shao X, Zhao D, et al.Self-assembled te-trahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation[J]. ACS Appl Mater Interfaces, 2018, 10(9):7892-7900. [29] Kim SU, Lee HJ, Kim YB.Neural stem cell-based treatment for neurodegenerative diseases[J]. Neuro-pathology, 2013, 33(5):491-504. [30] Wong CT, Ahmad E, Li H, et al.Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders[J]. Cell Commun Signal, 2014, 12:19. [31] Lunn JS, Sakowski SA, Hur J, et al.Stem cell te-chnology for neurodegenerative diseases[J]. Ann Neurol, 2011, 70(3):353-361. [32] Zhong J, Guo B, Xie J, et al.Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter[J]. Bone Res, 2016, 4:15036. [33] Xue C, Xie J, Zhao D, et al.The JAK/STAT3 signal-ling pathway regulated angiogenesis in an endothe-lial cell/adipose-derived stromal cell co-culture, 3D gel model[J]. Cell Prolif, 2017, 50(1). doi:10.1111/cpr.12307. [34] Liu N, Zhou M, Zhang Q, et al.Stiffness regulates the proliferation and osteogenic/odontogenic dif-ferentiation of human dental pulp stem cells via the WNT signalling pathway[J]. Cell Prolif, 2018. doi: 10.1111/cpr.12435. [35] Zhou M, Liu NX, Shi SR, et al.Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway[J]. Nanomedicine, 2018. doi:10.1016/j.nano.2018.02.004. [36] Manokawinchoke J, Nattasit P, Thongngam T, et al.Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differen- tiation in human dental pulp cells[J]. Sci Rep, 2017, 7(1):10124. [37] Sohn S, Park Y, Srikanth S, et al.The role of ORAI1 in the odontogenic differentiation of human dental pulp stem cells[J]. J Dent Res, 2015, 94(11):1560-1567. [38] Charoenphol P, Bermudez H.Aptamer-targeted DNA nanostructures for therapeutic delivery[J]. Mol Pharm, 2014, 11(5):1721-1725. [39] Lee H, Lytton-Jean AK, Chen Y, et al.Molecularly self-assembled nucleic acid nanoparticles for targeted [40] Kim KR, Kim HY, Lee YD, et al.Self-assembled mirror DNA nanostructures for tumor-specific de-livery of anticancer drugs[J]. J Control Release, 2016, 243:121-131. [41] Tasciotti E.Smart cancer therapy with DNA origami[J]. Nat Biotechnol, 2018, 36(3):234-235. |
[1] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[2] | 王家烯,吕鸣樾,袁泉. 黏性骨在口腔组织再生中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 594-602. |
[3] | 于乐蓉,李祥伟,艾虹. 牙髓干细胞干性维持的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 463-471. |
[4] | 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478. |
[5] | 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358. |
[6] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[7] | 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42. |
[8] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632. |
[9] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[10] | 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419. |
[11] | 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488. |
[12] | 蔡韵竹,朱姝,刘尧,陈旭. 牙源性干细胞用于治疗神经系统疾病的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 255-262. |
[13] | 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271. |
[14] | 覃思文,廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282. |
[15] | 付恒怡,汪成林. 人牙髓干细胞无血清培养方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 220-226. |
|