国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (3): 249-254.doi: 10.7518/gjkq.2018.03.001

• 专家论坛 •    下一篇

DNA折纸技术在干细胞领域应用的研究进展

林云锋, 李松航   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院口腔颌面外科 成都 610041
  • 收稿日期:2018-01-14 修回日期:2018-03-16 出版日期:2018-05-01 发布日期:2018-05-01
  • 通讯作者: 林云锋,研究员,博士,Email:yunfenglin@scu.edu.cn
  • 作者简介:林云锋,研究员,博士,Email:yunfenglin@scu.edu.cn

Research progress on application of DNA origami in stem cell field

Lin Yunfeng, Li Songhang   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-01-14 Revised:2018-03-16 Online:2018-05-01 Published:2018-05-01

摘要: DNA折纸技术是近年来新提出的一种DNA自组装方法,可设计特定的DNA序列,遵循碱基互补配对原则来构建出更为复杂的纳米结构与纳米图案。近期发现通过DNA折纸技术构建出的DNA四面体纳米结构(TDN)在干细胞领域有着巨大应用潜能。本文就TDN结构、生物学特性以及在干细胞领域的应用进行综述。

关键词: DNA纳米结构, DNA四面体, 干细胞, 分化, 组织再生

Abstract: DNA origami is a newly proposed DNA self-assembly method in recent years. It can design specific DNA sequences and follow the principle of complementary base pairing to construct more complex nanostructures and nanopatterns. The recent discovery of tetrahedral DNA nanostructure (TDN) constructed by DNA origami has great application potential in the field of stem cells. In this study, we reviewed the structure and biological properties of TDN, and the applications of TDN in the field of stem cells.

Key words: DNA nanostructure, tetrahedral DNA nanostructure, stem cell, differentiation, tissue regeneration

中图分类号: 

  • Q75
[1] Zhang Y, Tu J, Wang D, et al.Programmable and multifunctional DNA-based materials for biomedical applications[J]. Adv Mater, 2018. doi:10.1002/adma.201703658.
[2] Pei H, Zuo X, Zhu D, et al.Functional DNA nanos-tructures for theranostic applications[J]. Acc Chem Res, 2014, 47(2):550-559.
[3] Hu Y, Cecconello A, Idili A, et al.Triplex DNA nanostructures: from basic properties to applications[J]. Angew Chem Int Ed Engl, 2017, 56(48):15210-15233.
[4] Liang L, Li J, Li Q, et al.Single-particle tracking and modulation of cell entry pathways of a tetrahe-dral DNA nanostructure in live cells[J]. Angew Chem Int Ed Engl, 2014, 53(30):7745-7750.
[5] Dong S, Zhao R, Zhu J, et al.Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus[J]. ACS Appl Mater Interfaces, 2015, 7(16):8834-8842.
[6] Peng Q, Shao XR, Xie J, et al.Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells[J]. ACS Appl Mater Interfaces, 2016, 8(20):12733-12739.
[7] Shi S, Lin S, Li Y, et al.Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes[J]. Chem Commun (Camb), 2018, 54(11):1327-1330.
[8] Li Q, Zhao D, Shao X, et al.Aptamer-modified te-trahedral DNA nanostructure for tumor-targeted drug delivery[J]. ACS Appl Mater Interfaces, 2017, 9(42): 36695-36701.
[9] Shao X, Lin S, Peng Q, et al.DNA Nanostructures: tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chon-drocyte phenotype and proliferation (small 12/2017)[J]. Small, 2017, 13(12). doi:10.1002/smll.01602770.
[10] Xie X, Shao X, Ma W, et al.Overcoming drug-resis-tant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures[J]. Nanoscale, 2018. doi:10.1002/adma.201703658.
[11] Jiang D, Sun Y, Li J, et al.Multiple-armed tetrahedral DNA nanostructures for tumortargeting, dualmoda-lity in vivo imaging[J]. ACS Appl Mater Interfaces, 2016, 8(7):4378-4384.
[12] Li J, Pei H, Zhu B, et al.Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleo-tides[J]. ACS Nano, 2011, 5(11):8783-8789.
[13] Petkar KC, Chavhan SS, Agatonovik-Kustrin S, et al.Nanostructured materials in drug and gene delivery: a review of the state of the art[J]. Crit Rev Ther Drug Carrier Syst, 2011, 28(2):101-164.
[14] Tian T, Zhang T, Zhou T, et al.Synthesis of an ethy-leneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle[J]. Nanoscale, 2017, 9(46):18402-18412.
[15] Zhang Q, Lin S, Shi S, et al.Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostruc-tures via the modulation of macrophage responses[J]. ACS Appl Mater Interfaces, 2018, 10(4):3421-3430.
[16] Dey D, Chaskar S, Athavale N, et al.Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238[J]. Phytother Res, 2014, 28(10):1479-1485.
[17] Shi S, Peng Q, Shao X, et al.Self-assembled tetrahe-dral DNA nanostructures promote adiposederived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway[J]. ACS Appl Mater Interfaces, 2016, 8(30):19353-19363.
[18] Riera KM, Rothfusz NE, Wilusz RE, et al.Interleu-kin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migra-tion[J]. Arthritis Res Ther, 2011, 13(6):R187.
[19] He Z, Hua J, Song Z.Concise review: mesenchymal stem cells ameliorate tissue injury via secretion of tumor necrosis factor-α stimulated protein/gene 6[J]. Stem Cells Int, 2014, 2014:761091.
[20] Lee TS, Lin JJ, Huo YN, et al.Progesterone inhibits endothelial cell migration through suppression of the Rho activity mediated by cSrc activation[J]. J Cell Biochem, 2015, 116(7):1411-1418.
[21] McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004, 6(4):483-495.
[22] Lin MN, Shang DS, Sun W, et al.Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells thr-ough human brain microvascular endothelial cell monolayers[J]. Brain Res, 2013, 1513:1-8.
[23] Habets GG, Scholtes EH, Zuydgeest D, et al.Identi-fication of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP ex-changers for Rho-like proteins[J]. Cell, 1994, 77(4): 537-549.
[24] Liu C, Zhu C, Li J, et al.The effect of the fibre orien-tation of electrospun scaffolds on the matrix produc-tion of rabbit annulus fibrosus-derived stem cells[J]. Bone Res, 2015, 3:15012.
[25] Ahmadzadeh A, Norozi F, Shahrabi S, et al.Wnt/β- catenin signaling in bone marrow niche[J]. Cell Tissue Res, 2016, 363(2):321-335.
[26] MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling[J]. Cold Spring Harb Perspect Biol, 2012, 4(12). doi:10.1101/cshperspect.a007880.
[27] Zhang F, Luo K, Rong Z, et al.Periostin upregulates Wnt/β-catenin signaling to promote the osteogenesis of CTLA4-modified human bone marrow-mesenchy-mal stem cells[J]. Sci Rep, 2017, 7:41634.
[28] Ma W, Shao X, Zhao D, et al.Self-assembled te-trahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation[J]. ACS Appl Mater Interfaces, 2018, 10(9):7892-7900.
[29] Kim SU, Lee HJ, Kim YB.Neural stem cell-based treatment for neurodegenerative diseases[J]. Neuro-pathology, 2013, 33(5):491-504.
[30] Wong CT, Ahmad E, Li H, et al.Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders[J]. Cell Commun Signal, 2014, 12:19.
[31] Lunn JS, Sakowski SA, Hur J, et al.Stem cell te-chnology for neurodegenerative diseases[J]. Ann Neurol, 2011, 70(3):353-361.
[32] Zhong J, Guo B, Xie J, et al.Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter[J]. Bone Res, 2016, 4:15036.
[33] Xue C, Xie J, Zhao D, et al.The JAK/STAT3 signal-ling pathway regulated angiogenesis in an endothe-lial cell/adipose-derived stromal cell co-culture, 3D gel model[J]. Cell Prolif, 2017, 50(1). doi:10.1111/cpr.12307.
[34] Liu N, Zhou M, Zhang Q, et al.Stiffness regulates the proliferation and osteogenic/odontogenic dif-ferentiation of human dental pulp stem cells via the WNT signalling pathway[J]. Cell Prolif, 2018. doi: 10.1111/cpr.12435.
[35] Zhou M, Liu NX, Shi SR, et al.Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway[J]. Nanomedicine, 2018. doi:10.1016/j.nano.2018.02.004.
[36] Manokawinchoke J, Nattasit P, Thongngam T, et al.Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differen- tiation in human dental pulp cells[J]. Sci Rep, 2017, 7(1):10124.
[37] Sohn S, Park Y, Srikanth S, et al.The role of ORAI1 in the odontogenic differentiation of human dental pulp stem cells[J]. J Dent Res, 2015, 94(11):1560-1567.
[38] Charoenphol P, Bermudez H.Aptamer-targeted DNA nanostructures for therapeutic delivery[J]. Mol Pharm, 2014, 11(5):1721-1725.
[39] Lee H, Lytton-Jean AK, Chen Y, et al.Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nat Nanotechnol, 2012, 7(6):389-393.
[40] Kim KR, Kim HY, Lee YD, et al.Self-assembled mirror DNA nanostructures for tumor-specific de-livery of anticancer drugs[J]. J Control Release, 2016, 243:121-131.
[41] Tasciotti E.Smart cancer therapy with DNA origami[J]. Nat Biotechnol, 2018, 36(3):234-235.
[1] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[2] 王家烯,吕鸣樾,袁泉. 黏性骨在口腔组织再生中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 594-602.
[3] 于乐蓉,李祥伟,艾虹. 牙髓干细胞干性维持的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 463-471.
[4] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[5] 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358.
[6] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[7] 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42.
[8] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[9] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[10] 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419.
[11] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[12] 蔡韵竹,朱姝,刘尧,陈旭. 牙源性干细胞用于治疗神经系统疾病的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 255-262.
[13] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[14] 覃思文,廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282.
[15] 付恒怡,汪成林. 人牙髓干细胞无血清培养方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 220-226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .