Int J Stomatol ›› 2021, Vol. 48 ›› Issue (3): 341-346.doi: 10.7518/gjkq.2021037

• Reviews • Previous Articles     Next Articles

Mechanism of sirtuin 1 in regulating periodontitis

Zhou Feng1(),Chen Ye1,Chen Chen2,Zhang Yining2,Geng Ruiman2,Liu Ji2()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2. West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, China
  • Received:2020-08-16 Revised:2020-12-24 Online:2021-05-01 Published:2021-05-14
  • Contact: Ji Liu E-mail:280606885@qq.com;liuji6103@scu.edu.cn

Abstract:

Periodontitis is a species of inflammatory, destructive diseases that occur in periodontal tissues. As the starting factor of periodontitis, dental plaque mediates oxidative stress and secondary inflammation, which leads to tissue destruction, alveolar bone absorption, and tooth loosening and loss. Sirtuin 1 (SIRT1), an important longevity factor, plays a vital role in antiaging and antistress applications, mediating apoptosis, autophagy, and regulating inflammation reaction. In recent years, several studies explored the relationship between SIRT1 and the occurrence and development of periodontitis from multiple perspectives, such as oxidative stress, inflammatory factors and pathways, and systemic diseases. This study reviews the relationship between SIRT1 and periodontitis, the possible mechanism, and its future clinical application to provide reference.

Key words: sirtuin 1, periodontitis, oxidative stress, inflammation, autophagy

CLC Number: 

  • R782

TrendMD: 
[1] Demmer RT, Papapanou PN. Epidemiologic patterns of chronic and aggressive periodontitis[J]. Periodontol 2000, 2010,53:28-44.
doi: 10.1111/prd.2010.53.issue-1
[2] Kinane DF, Preshaw PM, Loos BG, et al. Host-response: understanding the cellular and molecular mechanisms of host-microbial interactions: consensus of the Seventh European Workshop on Periodontology[J]. J Clin Periodontol, 2011,38(Suppl 11):44-48.
doi: 10.1111/jcpe.2011.38.issue-s11
[3] Kumar PS. From focal sepsis to periodontal medicine: a century of exploring the role of the oral microbiome in systemic disease[J]. J Physiol, 2017,595(2):465-476.
doi: 10.1113/tjp.2017.595.issue-2
[4] Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance[J]. Annu Rev Pathol, 2010,5:253-295.
doi: 10.1146/annurev.pathol.4.110807.092250
[5] Zainabadi K, Liu CJ, Guarente L. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2[J]. PLoS One, 2017,12(5):e0178520.
doi: 10.1371/journal.pone.0178520
[6] Zhang ZJ, Lin JL, Nisar M, et al. The Sirt1/P53 A-xis in diabetic intervertebral disc degeneration pathogenesis and therapeutics[J]. Oxid Med Cell Longev, 2019,2019:7959573.
[7] Yao S, Mahmud Z, Sachini N, et al. Characterization of FOXO acetylation[J]. Methods Mol Biol, 2019,1890:77-90.
[8] Liu H, Sheng M, Liu Y, et al. Expression of SIRT1 and oxidative stress in diabetic dry eye[J]. Int J Clin Exp Pathol, 2015,8(6):7644-7653.
[9] Rajendrasozhan S, Yang SR, Kinnula VL, et al. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2008,177(8):861-870.
doi: 10.1164/rccm.200708-1269OC
[10] Waddington RJ, Moseley R, Embery G. Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases[J]. Oral Dis, 2000,6(3):138-151.
pmid: 10822357
[11] Hwang JW, Yao HW, Caito S, et al. Redox regulation of SIRT1 in inflammation and cellular senescence[J]. Free Radic Biol Med, 2013,61:95-110.
doi: 10.1016/j.freeradbiomed.2013.03.015
[12] Akhtar MJ, Ahamed M, Alhadlaq HA, et al. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: potential implications in ROS associated degenerative disorders[J]. Biochim Biophys Acta Gen Subj, 2017,1861(4):802-813.
doi: 10.1016/j.bbagen.2017.01.018
[13] Nonaka K, Bando M, Sakamoto E, et al. 6-shogaol inhibits advanced glycation end-products-induced IL-6 and ICAM-1 expression by regulating oxidative responses in human gingival fibroblasts[J]. Mo-lecules, 2019,24(20):E3705.
[14] Bao X, Zhao J, Sun J, et al. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease[J]. ACS Nano, 2018,12(9):8882-8892.
doi: 10.1021/acsnano.8b04022
[15] Kuang YC, Hu B, Feng G, et al. Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells[J]. Biogerontology, 2020,21(1):13-27.
doi: 10.1007/s10522-019-09838-x
[16] Ha H, Kwak HB, Lee SW, et al. Reactive oxygen species mediate RANK signaling in osteoclasts[J]. Exp Cell Res, 2004,301(2):119-127.
doi: 10.1016/j.yexcr.2004.07.035
[17] Kanzaki H, Wada S, Narimiya T, et al. Pathways that regulate ROS scavenging enzymes, and their role in defense against tissue destruction in perio-dontitis[J]. Front Physiol, 2017,8:351.
doi: 10.3389/fphys.2017.00351
[18] Park GJ, Kim YS, Kang KL, et al. Effects of sirtuin 1 activation on nicotine and lipopolysaccharide-induced cytotoxicity and inflammatory cytokine production in human gingival fibroblasts[J]. J Periodontal Res, 2013,48(4):483-492.
doi: 10.1111/jre.12030
[19] Corrêa MG, Absy S, Tenenbaum H, et al. Resveratrol attenuates oxidative stress during experimental periodontitis in rats exposed to cigarette smoke inhalation[J]. J Periodontal Res, 2019,54(3):225-232.
doi: 10.1111/jre.2019.54.issue-3
[20] Tamaki N, Cristina Orihuela-Campos R, Inagaki Y, et al. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model[J]. Free Radic Biol Med, 2014,75:222-229.
doi: 10.1016/j.freeradbiomed.2014.07.034
[21] Joo MS, Kim WD, Lee KY, et al. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550[J]. Mol Cell Biol, 2016,36(14):1931-1942.
doi: 10.1128/MCB.00118-16
[22] D’Aiuto F, Nibali L, Parkar M, et al. Oxidative stress, systemic inflammation, and severe periodontitis[J]. J Dent Res, 2010,89(11):1241-1246.
doi: 10.1177/0022034510375830
[23] Tamaki N, Hayashida H, Fukui M, et al. Oxidative stress and antibody levels to periodontal bacteria in adults: the Nagasaki islands study[J]. Oral Dis, 2014,20(3):e49-e56.
doi: 10.1111/odi.12127
[24] Cueno ME, Seki K, Ochiai K, et al. Periodontal di-sease level-butyric acid putatively contributes to the ageing blood: a proposed link between periodontal diseases and the ageing process[J]. Mech Ageing Dev, 2017,162:100-105.
doi: 10.1016/j.mad.2017.01.005
[25] Liu J, Wang YX, Meng HX, et al. Butyrate rather than LPS subverts gingival epithelial homeostasis by downregulation of intercellular junctions and triggering pyroptosis[J]. J Clin Periodontol, 2019,46(9):894-907.
doi: 10.1111/jcpe.v46.9
[26] Caribé PMV, Villar CC, Romito GA, et al. Influence of the treatment of periodontal disease in serum concentration of sirtuin 1 and mannose-binding lectin[J]. J Periodontol, 2020,91(7):900-905.
doi: 10.1002/jper.v91.7
[27] Morimoto Y, Kawahara KI, Tancharoen S, et al. Tumor necrosis factor-alpha stimulates gingival epithelial cells to release high mobility-group box 1[J]. J Periodontal Res, 2008,43(1):76-83.
doi: 10.1111/jre.2008.43.issue-1
[28] Kim YS, Lee YM, Park JS, et al. SIRT1 modulates high-mobility group box 1-induced osteoclastogenic cytokines in human periodontal ligament cells[J]. J Cell Biochem, 2010,111(5):1310-1320.
doi: 10.1002/jcb.22858
[29] Park YD, Kim YS, Jung YM, et al. Porphyromonas gingivalis lipopolysaccharide regulates interleukin(IL)-17 and IL-23 expression via SIRT1 modulation in human periodontal ligament cells[J]. Cytokine, 2012,60(1):284-293.
doi: 10.1016/j.cyto.2012.05.021
[30] Kim SR, Lee KS, Park SJ, et al. Involvement of sirtuin 1 in airway inflammation and hyperresponsiveness of allergic airway disease[J]. J Allergy Clin Immunol, 2010,125(2):449-460.e14.
doi: 10.1016/j.jaci.2009.08.009
[31] Liu FC, Day YJ, Liou JT, et al. Sirtinol attenuates hepatic injury and pro-inflammatory cytokine production following trauma-hemorrhage in male Spra-gue-Dawley rats[J]. Acta Anaesthesiol Scand, 2008,52(5):635-640.
doi: 10.1111/j.1399-6576.2008.01592.x
[32] Li KX, Lv G, Pan LF. Sirt1 alleviates LPS induced inflammation of periodontal ligament fibroblasts via downregulation of TLR4[J]. Int J Biol Macromol, 2018,119:249-254.
doi: 10.1016/j.ijbiomac.2018.07.099
[33] Chin YT, Hsieh MT, Lin CY, et al. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-β-glucoside isolated from polygoni multiflori ameliorates the development of perio-dontitis[J]. Mediators Inflamm, 2016,2016:6953459.
[34] Minagawa T, Okui T, Takahashi N, et al. Resveratrol suppresses the inflammatory responses of human gingival epithelial cells in a SIRT1 independent manner[J]. J Periodontal Res, 2015,50(5):586-593.
doi: 10.1111/jre.12238
[35] Slots J. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017,75(1):7-23.
doi: 10.1111/prd.12221
[36] Cullinan MP, Seymour GJ. Periodontal disease and systemic illness: will the evidence ever be enough[J]. Periodontol 2000, 2013,62(1):271-286.
doi: 10.1111/prd.2013.62.issue-1
[37] Pallasch TJ, Slots J. Antibiotic prophylaxis and the medically compromised patient[J]. Periodontol 2000, 1996,10:107-138.
pmid: 9567940
[38] Nakajima M, Arimatsu K, Minagawa T, et al. Brazi-lian propolis mitigates impaired glucose and lipid metabolism in experimental periodontitis in mice[J]. BMC Complement Altern Med, 2016,16(1):329.
doi: 10.1186/s12906-016-1305-8
[39] Liang F, Kume S, Koya D. SIRT1 and insulin resistance[J]. Nat Rev Endocrinol, 2009,5(7):367-373.
doi: 10.1038/nrendo.2009.101
[40] Zheng Y, Dong C, Yang JL, et al. Exosomal micro-RNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol, 2019,234(11):20662-20674.
doi: 10.1002/jcp.28671 pmid: WOS:000478018200133
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[3] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[4] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[5] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[6] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[7] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[8] Yang Xiaoyu,Yuan Quan.. Research progress on the role of extravascular fibrinogen deposition in mucosal diseases [J]. Int J Stomatol, 2023, 50(4): 457-462.
[9] Huang Dingming, Zhang Lan, Man Yi. Biologic bases of nature tooth-related maxillary sinus floor elevation [J]. Int J Stomatol, 2023, 50(3): 251-262.
[10] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[11] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[12] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[13] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[14] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[15] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .