国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (5): 553-559.doi: 10.7518/gjkq.2018.05.010
Jiangxue Tian,Longyi Mo,Xiaoyue Jia,Chengcheng Liu,Xin. Xu()
摘要:
生长因子是组织修复的基本调节者,在牙周组织再生过程中发挥重要作用。转化生长因子β(TGF-β)是一种调节细胞生长和分化的多肽。近年来的研究表明,TGF-β在牙周炎发生、发展中发挥了十分重要的作用,调节TGF-β信号通路可缓解牙周炎症状,促进牙周组织再生,为治疗牙周炎提供新的思路。本文就TGF-β在牙周炎发生、发展中的作用与机制方面的研究进展进行综述。
中图分类号:
[1] | 孟焕新 . 中国牙周病防治指南[M]. 北京: 人民卫生出版社, 2014. |
Meng HX. Guidelines for the prevention and treat-ment of periodontal diseases in China[M]. Beijing: People’s Medical Publishing House, 2014. | |
[2] |
Hajishengallis G , Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015,15(1):30-44.
doi: 10.1038/nri3785 pmid: 4276050 |
[3] |
Nevins M, Kao RT , McGuire MK, et al. Platelet-derived growth factor promotes periodontal re-generation in localized osseous defects: 36-month extension results from a randomized, controlled, double-masked clinical trial[J]. J Periodontol, 2013,84(4):456-464.
doi: 10.1902/jop.2012.120141 |
[4] |
Kitamura M, Akamatsu M, Kawanami M , et al. Randomized placebo-controlled and controlled non-inferiority phase Ⅲ trials comparing trafermin, a recombinant human fibroblast growth factor 2, and enamel matrix derivative in periodontal regeneration in intrabony defects[J]. J Bone Miner Res, 2016,31(4):806-814.
doi: 10.1002/jbmr.2738 |
[5] |
Takeuchi T, Bizenjima T, Ishii Y , et al. Enhanced healing of surgical periodontal defects in rats following application of a self-assembling peptide nanofibre hydrogel[J]. J Clin Periodontol, 2016,43(3):279-288.
doi: 10.1111/jcpe.2016.43.issue-3 |
[6] | Haidar ZS , Osseo regeneration of the cranio-maxillo-facial and oro-dento-alveolar complexes using a novel self-assembling peptide nanofibrous hydrogel scaffold and its composites[J]. EC Dent Sci, 2016,3:568-579. |
[7] |
Li MO, Wan YY, Sanjabi S , et al. Transforming growth factor-β regulation of immune responses[J]. Annu Rev Immuno, 2006,24(1):99-146.
doi: 10.1146/annurev.immunol.24.021605.090737 |
[8] |
Bettelli E, Carrier YJ, Gao WD , et al. Reciprocal developmental pathways for the generation of patho-genic effector TH17 and regulatory T cells[J]. Nature, 2006,441(7090):235-238.
doi: 10.1038/nature04753 |
[9] |
Cheng WC, Hughes FJ, Taams LS , The presence, function and regulation of IL-17 and Th17 cells in periodontitis[J]. J Clin Periodontol, 2014,41(6):541-549.
doi: 10.1111/jcpe.12238 |
[10] |
Veldhoen M , Uyttenhove C, van Snick J, et al. Trans-forming growth factor-β ‘reprograms’ the differentia- tion of T helper 2 cells and promotes an interleukin 9-producing subset[J]. Nat Immunol, 2008,9(12):1341-1346.
doi: 10.1038/ni.1659 |
[11] |
Zhang H, Wong CC, Wei H , et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM me-diates vascular metastasis of hypoxic breast cancer cells to the lungs[J]. Oncogene, 2012,31(14):1757-1770.
doi: 10.1038/onc.2011.365 |
[12] |
Watanabe T, Yasue A, Tanaka E , Inhibition of trans-forming growth factor β1/Smad3 signaling decreases hypoxia-inducible factor-1α protein stability by in-ducing prolyl hydroxylase 2 expression in human periodontal ligament cells[J]. J Periodontol, 2013,84(9):1346-1352.
doi: 10.1902/jop.2012.120373 |
[13] |
Yoshimoto T, Fujita T, Kajiya M , et al. Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells[J]. Cyto-kine, 2015,75(1):165-173.
doi: 10.1016/j.cyto.2015.03.011 |
[14] | Yoshimoto T, Fujita T, Kajiya M , et al. Aggregati-bacter actinomycetemcomitans outer membrane protein 29 (Omp29) induces TGF-β-regulated apoptosis signal in human gingival epithelial cells via fibronectin/integrinβ1/FAK cascade[J]. Cell Mi-crobiol, 2016,18(12):1723-1738. |
[15] |
Noack M, Miossec P , Th17 and regulatory T cell balance in autoimmune and inflammatory diseases[J]. Autoimmun Rev, 2014,13(6):668-677.
doi: 10.1016/j.autrev.2013.12.004 pmid: 24418308 |
[16] |
Li MO, Sanjabi S, Flavell RA , Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms[J]. Immunity, 2006,25(3):455-471.
doi: 10.1016/j.immuni.2006.07.011 |
[17] |
Yoshimura A, Wakabayashi Y, Mori T , Cellular and molecular basis for the regulation of inflammation by TGF-β[J]. J Biochem, 2010,147(6):781-792.
doi: 10.1093/jb/mvq043 pmid: 20410014 |
[18] |
Shon MS, Kim RH, Kwon OJ , et al. Beneficial role and function of fisetin in skin health via regulation of the CCN2/TGF-β signaling pathway[J]. Food Sci Biotech, 2016,25(S1):133-141.
doi: 10.1007/s10068-016-0110-y |
[19] |
Takeuchi H, Kubota S, Murakashi E , et al. Effect of transforming growth factor-beta1 on expression of the connective tissue growth factor (CCN2/CTGF) gene in normal human gingival fibroblasts and perio-dontal ligament cells[J]. J Periodont Res, 2009,44(2):161-169.
doi: 10.1111/jre.2009.44.issue-2 |
[20] |
Mize TW, Sundararaj KP, Leite RS , et al. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in sur-gically removed periodontal tissues with chronic periodontitis[J]. J Periodont Res, 2015,50(3):315-319.
doi: 10.1111/jre.2015.50.issue-3 |
[21] |
Wei YB, Ye Q, Tang Z , et al. Calcitonin induces collagen synjournal and osteoblastic differentiation in human periodontal ligament fibroblasts[J]. Arch Oral Biol, 2017,74:114-122.
doi: 10.1016/j.archoralbio.2016.11.014 |
[22] |
Xu L, Cui WH, Zhou WC , et al. Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation[J]. J Cell Mol Med, 2017,21(8):1545-1554.
doi: 10.1111/jcmm.2017.21.issue-8 |
[23] |
Xu H, He Y, Feng J , et al. Wnt3α and transforming growth factor-β induce myofibroblast differentiation from periodontal ligament cells via different path-ways[J]. Exp Cell Res, 2017,353(2):55-62.
doi: 10.1016/j.yexcr.2016.12.026 |
[24] |
Arancibia R, Oyarzún A, Silva D , et al. Tumor ne-crosis factor-α inhibits transforming growth factor-β-stimulated myofibroblastic differentiation and extra-cellular matrix production in human gingival fibro-blasts[J]. J Periodontol, 2013,84(5):683-693.
doi: 10.1902/jop.2012.120225 |
[25] |
Huang YQ, Shen ZZ, Chen QH , et al. Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-β/Smad pathway in vascular smooth muscle cells[J]. Sci Rep, 2016,6:19503.
doi: 10.1038/srep19503 |
[26] |
Heng NH, Zahlten J, Cordes V , et al. Effects of enamel matrix derivative and transforming growth factor-β1 on connective tissue growth factor in human periodontal ligament fibroblasts[J]. J Periodontol, 2015,86(4):569-577.
doi: 10.1902/jop.2015.120448 |
[27] | 张小恒, 余占海, 张国英 , 等. 转化生长因子-β1对大鼠牙周组织中白细胞介素-6、骨钙素水平的影响[J]. 口腔医学研究, 2010,26(2):171-174. |
Zhang XH, Yu ZH, Zhang GY , et al. Effect of trans-forming growth factor-β1 on the levels of IL-6 and BGP in periodontal tissues in rats[J]. J Oral Sci Res, 2010,26(2):171-174. | |
[28] |
Anitua E, Troya M, Orive G , Plasma rich in growth factors promote gingival tissue regeneration by stimulating fibroblast proliferation and migration and by blocking transforming growth factor-β1-induced myodifferentiation[J]. J Periodontol, 2012,83(8):1028-1037.
doi: 10.1902/jop.2011.110505 |
[29] |
Fang ST, Pentinmikko N, Ilmonen M , et al. Dual action of TGF-β induces vascular growth in vivo through recruitment of angiogenic VEGF-producing hematopoietic effector cells[J]. Angiogenesis, 2012,15(3):511-519.
doi: 10.1007/s10456-012-9278-9 |
[30] | Strand DW, Liang YY, Yang F , et al. TGF-β induc-tion of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways[J]. Am J Clin Exp Urol, 2014,2(3):239-248. |
[31] |
Li L, Zhu ZM, Xiao WX , et al. Multi-walled carbon nanotubes promote cementoblast differentiation and mineralization through the TGF-β/Smad signaling pathway[J]. Int J Mol Sci, 2015,16(2):3188-3201.
doi: 10.3390/ijms16023188 |
[32] |
Choi H, Ahn YH, Kim TH , et al. TGF-β signaling regulates cementum formation through osterix ex-pression[J]. Sci Rep, 2016,6:26046.
doi: 10.1038/srep26046 pmid: 27180803 |
[33] |
Xu X, Zheng LW, Yuan Q , et al. Transforming growth factor-β in stem cells and tissue homeostasis[J]. Bone Res, 2018,6:2.
doi: 10.1038/s41413-017-0005-4 pmid: 5802812 |
[34] |
Bianco P, Cao X, Frenette PS , et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine[J]. Nat Med, 2013,19(1):35-42.
doi: 10.1038/nm.3028 |
[35] |
Crane JL, Cao X , Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling[J]. J Clin Invest, 2014,124(2):466-472.
doi: 10.1172/JCI70050 pmid: 3904610 |
[36] | Yokota J, Chosa N, Sawada S , et al. PDGF-induced PI3K-mediated signaling enhances the TGF-β-induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner[J]. Int J Mol Med, 2013,33(3):534-542. |
[37] | 张国英 . 转化生长因子-β1对人牙周膜细胞生物学活性及大鼠牙周组织中IL-6, BGP表达的影响[D]. 兰州: 兰州大学, 2008. |
Zhang GY . The effect of transforming growth factor- β1 on the biological activity of human periodontal ligament cells and the expression of IL-6 and BGP in rat periodontal tissues[D]. Lanzhou: Lanzhou Univer-sity, 2008. | |
[38] |
Wang ZS, Feng ZH, Wu GF , et al. The use of pla-telet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering[J]. Sci Rep, 2016,6:28126.
doi: 10.1038/srep28126 |
[39] |
Gürkan A, Cinarcik S, Hüseyinov A , Adjunctive subantimicrobial dose doxycycline: effect on clinical parameters and gingival crevicular fluid transforming growth factor-β levels in severe, generalized chronic periodontitis[J]. J Clin Periodontol, 2005,32(3):244-253.
doi: 10.1111/cpe.2005.32.issue-3 |
[40] |
Jung GU, Pang EK , Effects of enamel matrix deriva-tives on the proliferation and the release of growth factors of human periodontal ligament cells[J]. J Korean Acad Prosthodon, 2016,54(3):203-209.
doi: 10.4047/jkap.2016.54.3.203 |
[41] |
Suda N, Moriyama K, Ganburged G , Effect of angio-tensin Ⅱ receptor blocker on experimental periodon-titis in a mouse model of Marfan syndrome[J]. Infect Immun, 2013,81(1):182-188.
doi: 10.1128/IAI.00886-12 |
[42] |
Suzuki J, Aoyama N, Izumi Y , et al. Effect of perio-dontitis on cardiovascular manifestations in Marfan syndrome. Critical common role of TGF-β[J]. Int Heart J, 2015,56(2):121-124.
doi: 10.1536/ihj.14-247 |
[43] |
Takahashi T, Ono H, Ono Y , et al. Combination therapy with telmisartan and spironolactone alle-viates L-NAME exacerbated nephrosclerosis with an increase in PPAR-γ and decrease in β1[J]. Int Heart J, 2007,48(5):637-647.
doi: 10.1536/ihj.48.637 |
[44] |
胡胜, 沈月霞, 陈建 , 等. 糖尿病大鼠牙槽骨中TGF-β1 mRNA表达与骨密度变化相关性研究[J]. 现代口腔医学杂志, 2004,18(4):304-306.
doi: 10.3969/j.issn.1003-7632.2004.04.006 |
Hu S, Shen YX, Chen J , et al. The correlation be-tween bone density and mRNA expression of TGF- β1 in the alveolars with experimental diabetic rats[J]. J Modern Stomatol, 2004,18(4):304-306.
doi: 10.3969/j.issn.1003-7632.2004.04.006 |
|
[45] |
Moustakas A, Heldin CH , Mechanisms of TGFβ-induced epithelial-mesenchymal transition[J]. J Clin Med, 2016,5(7):63.
doi: 10.3390/jcm5070063 |
[46] |
Nieto MA, Huang RY, Jackson RA , et al. EMT: 2016[J]. Cell, 2016,166(1):21-45.
doi: 10.1016/j.cell.2016.06.028 |
[47] |
Park SH, Jung EH, Kim GY , et al. Itch E3 ubiquitin ligase positively regulates TGF-β signaling to EMT via Smad7 ubiquitination[J]. Mol Cells, 2015,38(1):20-25.
doi: 10.14348/molcells.2015.2120 |
[48] |
Câmara J, Jarai G , Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-α[J]. Fibrogenesis Tissue Repair, 2010,3(1):2.
doi: 10.1186/1755-1536-3-2 |
[49] | Pisoschi CG, Stănciulescu CE, Andrei AM , et al. Role of transforming growth factor β-connective tissue growth factor pathway in dihydropyridine calcium channel blockers-induced gingival overgrowth[J]. Rom J Morphol Embryol, 2014,55(2):285-290. |
[1] | 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285. |
[2] | 王晓宇,朱昭蓉,吴亚菲,赵蕾. 中性粒细胞细胞外陷阱网与牙周炎的相关性研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 304-310. |
[3] | 陈斌,徐蓉蓉,张家鼎,闫福华. 重度牙周炎患牙的保存治疗[J]. 国际口腔医学杂志, 2020, 47(2): 125-130. |
[4] | 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120. |
[5] | 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83. |
[6] | 张智颖,刘东娟,潘亚萍. 牙龈卟啉单胞菌外膜囊泡的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 670-674. |
[7] | 孙兆泽,刘双,李纾. 神经导向分子及其在口腔组织再生中的作用[J]. 国际口腔医学杂志, 2019, 46(6): 680-686. |
[8] | 姜亦洋,刘怡. 甲基化对牙周炎发生与发展的影响及临床应用[J]. 国际口腔医学杂志, 2019, 46(5): 593-603. |
[9] | 张佳喻,罗宁,苗棣,应绚,陈悦. 意向性牙再植治疗重度牙周炎患牙的临床研究[J]. 国际口腔医学杂志, 2019, 46(4): 400-406. |
[10] | 原振英,管翠强,南欣荣. DNA甲基化与口腔疾病的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 437-441. |
[11] | 贾婷婷,颜世果. 特异性AT序列结合蛋白2在颌面部发育及牙周组织再生中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 320-325. |
[12] | 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134. |
[13] | 吕慧欣,杜留熠,王鹞,于维先,任静宜,顾芯铭,周延民. 炎症小体在牙周炎中的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 186-190. |
[14] | 聂然,郭天奇,李雪,裴婷婷,秦勤,周延民. 与牙周炎相关的组织蛋白酶研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 197-202. |
[15] | 王鹞,吕慧欣,杜留熠,顾芯铭,任静宜,于维先,周延民. 软脑膜在外周炎症影响神经炎症过程中的作用[J]. 国际口腔医学杂志, 2019, 46(2): 223-227. |
|