国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (5): 553-559.doi: 10.7518/gjkq.2018.05.010

• 综述 • 上一篇    下一篇

转化生长因子β在牙周炎发生发展中的作用及其机制

田江雪,莫龙义,贾小玥,刘程程,徐欣()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2017-12-31 修回日期:2018-05-28 出版日期:2018-09-01 发布日期:2018-09-20
  • 通讯作者: 徐欣
  • 作者简介:田江雪,硕士,Email:2367070214@qq.com
  • 基金资助:
    国家自然科学基金(81430011);四川大学青年教师科研启动基金(2016SCU11056)

Role of transforming growth factor-β in periodontitis

Jiangxue Tian,Longyi Mo,Xiaoyue Jia,Chengcheng Liu,Xin. Xu()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-12-31 Revised:2018-05-28 Online:2018-09-01 Published:2018-09-20
  • Contact: Xin. Xu
  • Supported by:
    This study was supported by Natural Science Foundation of China(81430011);Young Teachers’ Scientific Research Start Foundation of Sichuan University(2016SCU11056)

摘要:

生长因子是组织修复的基本调节者,在牙周组织再生过程中发挥重要作用。转化生长因子β(TGF-β)是一种调节细胞生长和分化的多肽。近年来的研究表明,TGF-β在牙周炎发生、发展中发挥了十分重要的作用,调节TGF-β信号通路可缓解牙周炎症状,促进牙周组织再生,为治疗牙周炎提供新的思路。本文就TGF-β在牙周炎发生、发展中的作用与机制方面的研究进展进行综述。

关键词: 转化生长因子β, 牙周炎, 炎性骨吸收, 组织再生

Abstract:

Growth factor is the basic regulator of tissue repair and plays an important role in periodontal tissue regeneration. Transforming growth factor-β (TGF-β) is a peptide that can regulate cell growth and differentiation. TGF-β has played an important role in the occurrence and development of periodontitis in previous studies. Thus, regulation of TGF-β expression may alleviate the symptoms of periodontitis and promote the regeneration of periodontal tissue, which might provide new ideas for the treatment of periodontitis. Research progress in this field is reviewed in the paper.

Key words: transforming growth factor-β, periodontitis, inflammatory bone resorption, tissue regeneration

中图分类号: 

  • R781.4 +2
[1] 孟焕新 . 中国牙周病防治指南[M]. 北京: 人民卫生出版社, 2014.
Meng HX. Guidelines for the prevention and treat-ment of periodontal diseases in China[M]. Beijing: People’s Medical Publishing House, 2014.
[2] Hajishengallis G , Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015,15(1):30-44.
doi: 10.1038/nri3785 pmid: 4276050
[3] Nevins M, Kao RT , McGuire MK, et al. Platelet-derived growth factor promotes periodontal re-generation in localized osseous defects: 36-month extension results from a randomized, controlled, double-masked clinical trial[J]. J Periodontol, 2013,84(4):456-464.
doi: 10.1902/jop.2012.120141
[4] Kitamura M, Akamatsu M, Kawanami M , et al. Randomized placebo-controlled and controlled non-inferiority phase Ⅲ trials comparing trafermin, a recombinant human fibroblast growth factor 2, and enamel matrix derivative in periodontal regeneration in intrabony defects[J]. J Bone Miner Res, 2016,31(4):806-814.
doi: 10.1002/jbmr.2738
[5] Takeuchi T, Bizenjima T, Ishii Y , et al. Enhanced healing of surgical periodontal defects in rats following application of a self-assembling peptide nanofibre hydrogel[J]. J Clin Periodontol, 2016,43(3):279-288.
doi: 10.1111/jcpe.2016.43.issue-3
[6] Haidar ZS , Osseo regeneration of the cranio-maxillo-facial and oro-dento-alveolar complexes using a novel self-assembling peptide nanofibrous hydrogel scaffold and its composites[J]. EC Dent Sci, 2016,3:568-579.
[7] Li MO, Wan YY, Sanjabi S , et al. Transforming growth factor-β regulation of immune responses[J]. Annu Rev Immuno, 2006,24(1):99-146.
doi: 10.1146/annurev.immunol.24.021605.090737
[8] Bettelli E, Carrier YJ, Gao WD , et al. Reciprocal developmental pathways for the generation of patho-genic effector TH17 and regulatory T cells[J]. Nature, 2006,441(7090):235-238.
doi: 10.1038/nature04753
[9] Cheng WC, Hughes FJ, Taams LS , The presence, function and regulation of IL-17 and Th17 cells in periodontitis[J]. J Clin Periodontol, 2014,41(6):541-549.
doi: 10.1111/jcpe.12238
[10] Veldhoen M , Uyttenhove C, van Snick J, et al. Trans-forming growth factor-β ‘reprograms’ the differentia- tion of T helper 2 cells and promotes an interleukin 9-producing subset[J]. Nat Immunol, 2008,9(12):1341-1346.
doi: 10.1038/ni.1659
[11] Zhang H, Wong CC, Wei H , et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM me-diates vascular metastasis of hypoxic breast cancer cells to the lungs[J]. Oncogene, 2012,31(14):1757-1770.
doi: 10.1038/onc.2011.365
[12] Watanabe T, Yasue A, Tanaka E , Inhibition of trans-forming growth factor β1/Smad3 signaling decreases hypoxia-inducible factor-1α protein stability by in-ducing prolyl hydroxylase 2 expression in human periodontal ligament cells[J]. J Periodontol, 2013,84(9):1346-1352.
doi: 10.1902/jop.2012.120373
[13] Yoshimoto T, Fujita T, Kajiya M , et al. Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells[J]. Cyto-kine, 2015,75(1):165-173.
doi: 10.1016/j.cyto.2015.03.011
[14] Yoshimoto T, Fujita T, Kajiya M , et al. Aggregati-bacter actinomycetemcomitans outer membrane protein 29 (Omp29) induces TGF-β-regulated apoptosis signal in human gingival epithelial cells via fibronectin/integrinβ1/FAK cascade[J]. Cell Mi-crobiol, 2016,18(12):1723-1738.
[15] Noack M, Miossec P , Th17 and regulatory T cell balance in autoimmune and inflammatory diseases[J]. Autoimmun Rev, 2014,13(6):668-677.
doi: 10.1016/j.autrev.2013.12.004 pmid: 24418308
[16] Li MO, Sanjabi S, Flavell RA , Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms[J]. Immunity, 2006,25(3):455-471.
doi: 10.1016/j.immuni.2006.07.011
[17] Yoshimura A, Wakabayashi Y, Mori T , Cellular and molecular basis for the regulation of inflammation by TGF-β[J]. J Biochem, 2010,147(6):781-792.
doi: 10.1093/jb/mvq043 pmid: 20410014
[18] Shon MS, Kim RH, Kwon OJ , et al. Beneficial role and function of fisetin in skin health via regulation of the CCN2/TGF-β signaling pathway[J]. Food Sci Biotech, 2016,25(S1):133-141.
doi: 10.1007/s10068-016-0110-y
[19] Takeuchi H, Kubota S, Murakashi E , et al. Effect of transforming growth factor-beta1 on expression of the connective tissue growth factor (CCN2/CTGF) gene in normal human gingival fibroblasts and perio-dontal ligament cells[J]. J Periodont Res, 2009,44(2):161-169.
doi: 10.1111/jre.2009.44.issue-2
[20] Mize TW, Sundararaj KP, Leite RS , et al. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in sur-gically removed periodontal tissues with chronic periodontitis[J]. J Periodont Res, 2015,50(3):315-319.
doi: 10.1111/jre.2015.50.issue-3
[21] Wei YB, Ye Q, Tang Z , et al. Calcitonin induces collagen synjournal and osteoblastic differentiation in human periodontal ligament fibroblasts[J]. Arch Oral Biol, 2017,74:114-122.
doi: 10.1016/j.archoralbio.2016.11.014
[22] Xu L, Cui WH, Zhou WC , et al. Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation[J]. J Cell Mol Med, 2017,21(8):1545-1554.
doi: 10.1111/jcmm.2017.21.issue-8
[23] Xu H, He Y, Feng J , et al. Wnt3α and transforming growth factor-β induce myofibroblast differentiation from periodontal ligament cells via different path-ways[J]. Exp Cell Res, 2017,353(2):55-62.
doi: 10.1016/j.yexcr.2016.12.026
[24] Arancibia R, Oyarzún A, Silva D , et al. Tumor ne-crosis factor-α inhibits transforming growth factor-β-stimulated myofibroblastic differentiation and extra-cellular matrix production in human gingival fibro-blasts[J]. J Periodontol, 2013,84(5):683-693.
doi: 10.1902/jop.2012.120225
[25] Huang YQ, Shen ZZ, Chen QH , et al. Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-β/Smad pathway in vascular smooth muscle cells[J]. Sci Rep, 2016,6:19503.
doi: 10.1038/srep19503
[26] Heng NH, Zahlten J, Cordes V , et al. Effects of enamel matrix derivative and transforming growth factor-β1 on connective tissue growth factor in human periodontal ligament fibroblasts[J]. J Periodontol, 2015,86(4):569-577.
doi: 10.1902/jop.2015.120448
[27] 张小恒, 余占海, 张国英 , 等. 转化生长因子-β1对大鼠牙周组织中白细胞介素-6、骨钙素水平的影响[J]. 口腔医学研究, 2010,26(2):171-174.
Zhang XH, Yu ZH, Zhang GY , et al. Effect of trans-forming growth factor-β1 on the levels of IL-6 and BGP in periodontal tissues in rats[J]. J Oral Sci Res, 2010,26(2):171-174.
[28] Anitua E, Troya M, Orive G , Plasma rich in growth factors promote gingival tissue regeneration by stimulating fibroblast proliferation and migration and by blocking transforming growth factor-β1-induced myodifferentiation[J]. J Periodontol, 2012,83(8):1028-1037.
doi: 10.1902/jop.2011.110505
[29] Fang ST, Pentinmikko N, Ilmonen M , et al. Dual action of TGF-β induces vascular growth in vivo through recruitment of angiogenic VEGF-producing hematopoietic effector cells[J]. Angiogenesis, 2012,15(3):511-519.
doi: 10.1007/s10456-012-9278-9
[30] Strand DW, Liang YY, Yang F , et al. TGF-β induc-tion of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways[J]. Am J Clin Exp Urol, 2014,2(3):239-248.
[31] Li L, Zhu ZM, Xiao WX , et al. Multi-walled carbon nanotubes promote cementoblast differentiation and mineralization through the TGF-β/Smad signaling pathway[J]. Int J Mol Sci, 2015,16(2):3188-3201.
doi: 10.3390/ijms16023188
[32] Choi H, Ahn YH, Kim TH , et al. TGF-β signaling regulates cementum formation through osterix ex-pression[J]. Sci Rep, 2016,6:26046.
doi: 10.1038/srep26046 pmid: 27180803
[33] Xu X, Zheng LW, Yuan Q , et al. Transforming growth factor-β in stem cells and tissue homeostasis[J]. Bone Res, 2018,6:2.
doi: 10.1038/s41413-017-0005-4 pmid: 5802812
[34] Bianco P, Cao X, Frenette PS , et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine[J]. Nat Med, 2013,19(1):35-42.
doi: 10.1038/nm.3028
[35] Crane JL, Cao X , Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling[J]. J Clin Invest, 2014,124(2):466-472.
doi: 10.1172/JCI70050 pmid: 3904610
[36] Yokota J, Chosa N, Sawada S , et al. PDGF-induced PI3K-mediated signaling enhances the TGF-β-induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner[J]. Int J Mol Med, 2013,33(3):534-542.
[37] 张国英 . 转化生长因子-β1对人牙周膜细胞生物学活性及大鼠牙周组织中IL-6, BGP表达的影响[D]. 兰州: 兰州大学, 2008.
Zhang GY . The effect of transforming growth factor- β1 on the biological activity of human periodontal ligament cells and the expression of IL-6 and BGP in rat periodontal tissues[D]. Lanzhou: Lanzhou Univer-sity, 2008.
[38] Wang ZS, Feng ZH, Wu GF , et al. The use of pla-telet-rich fibrin combined with periodontal ligament and jaw bone mesenchymal stem cell sheets for periodontal tissue engineering[J]. Sci Rep, 2016,6:28126.
doi: 10.1038/srep28126
[39] Gürkan A, Cinarcik S, Hüseyinov A , Adjunctive subantimicrobial dose doxycycline: effect on clinical parameters and gingival crevicular fluid transforming growth factor-β levels in severe, generalized chronic periodontitis[J]. J Clin Periodontol, 2005,32(3):244-253.
doi: 10.1111/cpe.2005.32.issue-3
[40] Jung GU, Pang EK , Effects of enamel matrix deriva-tives on the proliferation and the release of growth factors of human periodontal ligament cells[J]. J Korean Acad Prosthodon, 2016,54(3):203-209.
doi: 10.4047/jkap.2016.54.3.203
[41] Suda N, Moriyama K, Ganburged G , Effect of angio-tensin Ⅱ receptor blocker on experimental periodon-titis in a mouse model of Marfan syndrome[J]. Infect Immun, 2013,81(1):182-188.
doi: 10.1128/IAI.00886-12
[42] Suzuki J, Aoyama N, Izumi Y , et al. Effect of perio-dontitis on cardiovascular manifestations in Marfan syndrome. Critical common role of TGF-β[J]. Int Heart J, 2015,56(2):121-124.
doi: 10.1536/ihj.14-247
[43] Takahashi T, Ono H, Ono Y , et al. Combination therapy with telmisartan and spironolactone alle-viates L-NAME exacerbated nephrosclerosis with an increase in PPAR-γ and decrease in β1[J]. Int Heart J, 2007,48(5):637-647.
doi: 10.1536/ihj.48.637
[44] 胡胜, 沈月霞, 陈建 , 等. 糖尿病大鼠牙槽骨中TGF-β1 mRNA表达与骨密度变化相关性研究[J]. 现代口腔医学杂志, 2004,18(4):304-306.
doi: 10.3969/j.issn.1003-7632.2004.04.006
Hu S, Shen YX, Chen J , et al. The correlation be-tween bone density and mRNA expression of TGF- β1 in the alveolars with experimental diabetic rats[J]. J Modern Stomatol, 2004,18(4):304-306.
doi: 10.3969/j.issn.1003-7632.2004.04.006
[45] Moustakas A, Heldin CH , Mechanisms of TGFβ-induced epithelial-mesenchymal transition[J]. J Clin Med, 2016,5(7):63.
doi: 10.3390/jcm5070063
[46] Nieto MA, Huang RY, Jackson RA , et al. EMT: 2016[J]. Cell, 2016,166(1):21-45.
doi: 10.1016/j.cell.2016.06.028
[47] Park SH, Jung EH, Kim GY , et al. Itch E3 ubiquitin ligase positively regulates TGF-β signaling to EMT via Smad7 ubiquitination[J]. Mol Cells, 2015,38(1):20-25.
doi: 10.14348/molcells.2015.2120
[48] Câmara J, Jarai G , Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-α[J]. Fibrogenesis Tissue Repair, 2010,3(1):2.
doi: 10.1186/1755-1536-3-2
[49] Pisoschi CG, Stănciulescu CE, Andrei AM , et al. Role of transforming growth factor β-connective tissue growth factor pathway in dihydropyridine calcium channel blockers-induced gingival overgrowth[J]. Rom J Morphol Embryol, 2014,55(2):285-290.
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[3] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[4] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[5] 王家烯,吕鸣樾,袁泉. 黏性骨在口腔组织再生中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 594-602.
[6] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[7] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[8] 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358.
[9] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[10] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[11] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[12] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[13] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[14] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[15] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .