国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (3): 249-254.doi: 10.7518/gjkq.2018.03.001

• 专家论坛 •    下一篇

DNA折纸技术在干细胞领域应用的研究进展

林云锋, 李松航   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院口腔颌面外科 成都 610041
  • 收稿日期:2018-01-14 修回日期:2018-03-16 出版日期:2018-05-01 发布日期:2018-05-01
  • 通讯作者: 林云锋,研究员,博士,Email:yunfenglin@scu.edu.cn
  • 作者简介:林云锋,研究员,博士,Email:yunfenglin@scu.edu.cn

Research progress on application of DNA origami in stem cell field

Lin Yunfeng, Li Songhang   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-01-14 Revised:2018-03-16 Online:2018-05-01 Published:2018-05-01

摘要: DNA折纸技术是近年来新提出的一种DNA自组装方法,可设计特定的DNA序列,遵循碱基互补配对原则来构建出更为复杂的纳米结构与纳米图案。近期发现通过DNA折纸技术构建出的DNA四面体纳米结构(TDN)在干细胞领域有着巨大应用潜能。本文就TDN结构、生物学特性以及在干细胞领域的应用进行综述。

关键词: DNA纳米结构, DNA四面体, 干细胞, 分化, 组织再生

Abstract: DNA origami is a newly proposed DNA self-assembly method in recent years. It can design specific DNA sequences and follow the principle of complementary base pairing to construct more complex nanostructures and nanopatterns. The recent discovery of tetrahedral DNA nanostructure (TDN) constructed by DNA origami has great application potential in the field of stem cells. In this study, we reviewed the structure and biological properties of TDN, and the applications of TDN in the field of stem cells.

Key words: DNA nanostructure, tetrahedral DNA nanostructure, stem cell, differentiation, tissue regeneration

中图分类号: 

  • Q75
[1] Zhang Y, Tu J, Wang D, et al.Programmable and multifunctional DNA-based materials for biomedical applications[J]. Adv Mater, 2018. doi:10.1002/adma.201703658.
[2] Pei H, Zuo X, Zhu D, et al.Functional DNA nanos-tructures for theranostic applications[J]. Acc Chem Res, 2014, 47(2):550-559.
[3] Hu Y, Cecconello A, Idili A, et al.Triplex DNA nanostructures: from basic properties to applications[J]. Angew Chem Int Ed Engl, 2017, 56(48):15210-15233.
[4] Liang L, Li J, Li Q, et al.Single-particle tracking and modulation of cell entry pathways of a tetrahe-dral DNA nanostructure in live cells[J]. Angew Chem Int Ed Engl, 2014, 53(30):7745-7750.
[5] Dong S, Zhao R, Zhu J, et al.Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus[J]. ACS Appl Mater Interfaces, 2015, 7(16):8834-8842.
[6] Peng Q, Shao XR, Xie J, et al.Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells[J]. ACS Appl Mater Interfaces, 2016, 8(20):12733-12739.
[7] Shi S, Lin S, Li Y, et al.Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes[J]. Chem Commun (Camb), 2018, 54(11):1327-1330.
[8] Li Q, Zhao D, Shao X, et al.Aptamer-modified te-trahedral DNA nanostructure for tumor-targeted drug delivery[J]. ACS Appl Mater Interfaces, 2017, 9(42): 36695-36701.
[9] Shao X, Lin S, Peng Q, et al.DNA Nanostructures: tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chon-drocyte phenotype and proliferation (small 12/2017)[J]. Small, 2017, 13(12). doi:10.1002/smll.01602770.
[10] Xie X, Shao X, Ma W, et al.Overcoming drug-resis-tant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures[J]. Nanoscale, 2018. doi:10.1002/adma.201703658.
[11] Jiang D, Sun Y, Li J, et al.Multiple-armed tetrahedral DNA nanostructures for tumortargeting, dualmoda-lity in vivo imaging[J]. ACS Appl Mater Interfaces, 2016, 8(7):4378-4384.
[12] Li J, Pei H, Zhu B, et al.Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleo-tides[J]. ACS Nano, 2011, 5(11):8783-8789.
[13] Petkar KC, Chavhan SS, Agatonovik-Kustrin S, et al.Nanostructured materials in drug and gene delivery: a review of the state of the art[J]. Crit Rev Ther Drug Carrier Syst, 2011, 28(2):101-164.
[14] Tian T, Zhang T, Zhou T, et al.Synthesis of an ethy-leneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle[J]. Nanoscale, 2017, 9(46):18402-18412.
[15] Zhang Q, Lin S, Shi S, et al.Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostruc-tures via the modulation of macrophage responses[J]. ACS Appl Mater Interfaces, 2018, 10(4):3421-3430.
[16] Dey D, Chaskar S, Athavale N, et al.Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238[J]. Phytother Res, 2014, 28(10):1479-1485.
[17] Shi S, Peng Q, Shao X, et al.Self-assembled tetrahe-dral DNA nanostructures promote adiposederived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway[J]. ACS Appl Mater Interfaces, 2016, 8(30):19353-19363.
[18] Riera KM, Rothfusz NE, Wilusz RE, et al.Interleu-kin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migra-tion[J]. Arthritis Res Ther, 2011, 13(6):R187.
[19] He Z, Hua J, Song Z.Concise review: mesenchymal stem cells ameliorate tissue injury via secretion of tumor necrosis factor-α stimulated protein/gene 6[J]. Stem Cells Int, 2014, 2014:761091.
[20] Lee TS, Lin JJ, Huo YN, et al.Progesterone inhibits endothelial cell migration through suppression of the Rho activity mediated by cSrc activation[J]. J Cell Biochem, 2015, 116(7):1411-1418.
[21] McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004, 6(4):483-495.
[22] Lin MN, Shang DS, Sun W, et al.Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells thr-ough human brain microvascular endothelial cell monolayers[J]. Brain Res, 2013, 1513:1-8.
[23] Habets GG, Scholtes EH, Zuydgeest D, et al.Identi-fication of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP ex-changers for Rho-like proteins[J]. Cell, 1994, 77(4): 537-549.
[24] Liu C, Zhu C, Li J, et al.The effect of the fibre orien-tation of electrospun scaffolds on the matrix produc-tion of rabbit annulus fibrosus-derived stem cells[J]. Bone Res, 2015, 3:15012.
[25] Ahmadzadeh A, Norozi F, Shahrabi S, et al.Wnt/β- catenin signaling in bone marrow niche[J]. Cell Tissue Res, 2016, 363(2):321-335.
[26] MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling[J]. Cold Spring Harb Perspect Biol, 2012, 4(12). doi:10.1101/cshperspect.a007880.
[27] Zhang F, Luo K, Rong Z, et al.Periostin upregulates Wnt/β-catenin signaling to promote the osteogenesis of CTLA4-modified human bone marrow-mesenchy-mal stem cells[J]. Sci Rep, 2017, 7:41634.
[28] Ma W, Shao X, Zhao D, et al.Self-assembled te-trahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation[J]. ACS Appl Mater Interfaces, 2018, 10(9):7892-7900.
[29] Kim SU, Lee HJ, Kim YB.Neural stem cell-based treatment for neurodegenerative diseases[J]. Neuro-pathology, 2013, 33(5):491-504.
[30] Wong CT, Ahmad E, Li H, et al.Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders[J]. Cell Commun Signal, 2014, 12:19.
[31] Lunn JS, Sakowski SA, Hur J, et al.Stem cell te-chnology for neurodegenerative diseases[J]. Ann Neurol, 2011, 70(3):353-361.
[32] Zhong J, Guo B, Xie J, et al.Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter[J]. Bone Res, 2016, 4:15036.
[33] Xue C, Xie J, Zhao D, et al.The JAK/STAT3 signal-ling pathway regulated angiogenesis in an endothe-lial cell/adipose-derived stromal cell co-culture, 3D gel model[J]. Cell Prolif, 2017, 50(1). doi:10.1111/cpr.12307.
[34] Liu N, Zhou M, Zhang Q, et al.Stiffness regulates the proliferation and osteogenic/odontogenic dif-ferentiation of human dental pulp stem cells via the WNT signalling pathway[J]. Cell Prolif, 2018. doi: 10.1111/cpr.12435.
[35] Zhou M, Liu NX, Shi SR, et al.Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway[J]. Nanomedicine, 2018. doi:10.1016/j.nano.2018.02.004.
[36] Manokawinchoke J, Nattasit P, Thongngam T, et al.Indirect immobilized Jagged1 suppresses cell cycle progression and induces odonto/osteogenic differen- tiation in human dental pulp cells[J]. Sci Rep, 2017, 7(1):10124.
[37] Sohn S, Park Y, Srikanth S, et al.The role of ORAI1 in the odontogenic differentiation of human dental pulp stem cells[J]. J Dent Res, 2015, 94(11):1560-1567.
[38] Charoenphol P, Bermudez H.Aptamer-targeted DNA nanostructures for therapeutic delivery[J]. Mol Pharm, 2014, 11(5):1721-1725.
[39] Lee H, Lytton-Jean AK, Chen Y, et al.Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nat Nanotechnol, 2012, 7(6):389-393.
[40] Kim KR, Kim HY, Lee YD, et al.Self-assembled mirror DNA nanostructures for tumor-specific de-livery of anticancer drugs[J]. J Control Release, 2016, 243:121-131.
[41] Tasciotti E.Smart cancer therapy with DNA origami[J]. Nat Biotechnol, 2018, 36(3):234-235.
[1] 石玉. 骨骼发育中骨骼干细胞的鉴定[J]. 国际口腔医学杂志, 2020, 47(3): 249-256.
[2] 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262.
[3] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[4] 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277.
[5] 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285.
[6] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[7] 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151.
[8] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[9] 陈宏丽,杨敬,尹刚,李皓缘,乔燕. 锌指蛋白32在口腔鳞状细胞癌中的表达意义及对口腔鳞状细胞癌干细胞的影响[J]. 国际口腔医学杂志, 2019, 46(6): 631-639.
[10] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[11] 孙兆泽,刘双,李纾. 神经导向分子及其在口腔组织再生中的作用[J]. 国际口腔医学杂志, 2019, 46(6): 680-686.
[12] 张凯莹,房付春,吴补领. 非编码RNA在牙源性干细胞成牙本质向分化中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 540-545.
[13] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
[14] 胡巍,王译凡,袁一方,李影,郭斌. 节律基因调控成骨和破骨活动机制的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 302-307.
[15] 贾婷婷,颜世果. 特异性AT序列结合蛋白2在颌面部发育及牙周组织再生中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 320-325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .