Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (6): 646-651.doi: 10.7518/gjkq.2018.06.005

• RNA Research • Previous Articles     Next Articles

Investigative progresses of microRNA in oral squamous cell carcinoma

Chuan Fang,Yadong Li()   

  1. Dept. of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 630014, China
  • Received:2017-11-20 Revised:2018-06-11 Online:2018-11-01 Published:2018-11-15
  • Contact: Yadong Li E-mail:llxxyydd2006@sina.com
  • Supported by:
    This study was supported by Training Program for Medical Supreme Reserve Talents of Chongqing National Health and Family Planning Commission(2017HBRC004)

Abstract:

MicroRNAs (miRNAs) are a series of noncoding single-stranded RNA molecules encoded by endogenous genes that affect post-transcriptional gene regulation. Aberrant expression of miRNA involved in oral squamous cell carcinomas is related to tumour growth, cellular apoptosis, invasion, metastasis, radiosensitivity and chemosensitivity. Such aberrant expression regulates target genes or signalling pathways and can potentially be applied to clinic as a kind of biomarker in early diagnosis and prognosis. Accordingly, this review generalizes the association between ectopic miRNA and oral squamous cell carcinoma. Simultaneously, it summarizes the axis, namely, miRNA-target gene/downstream-signaling pathway-tumorous effect, and forecasts the prospect of clinical application.

Key words: oral squamous cell carcinoma, microRNA, target gene, signaling pathway

CLC Number: 

  • R739.8

TrendMD: 

Fig 1

Biogenisis process of microRNA"

[1] Kozomara A, Griffiths-Jones S . Mirbase: annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Res, 2014,42(Database issue):D68-D73.
doi: 10.1093/nar/gkt1181 pmid: 24275495
[2] Alvarez-Garcia I, Miska EA . MicroRNA functions in animal development and human disease[J]. De-velopment, 2005,132(21):4653-4662.
[3] Fabian MR, Sonenberg N, Filipowicz W . Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010,79:351-379.
doi: 10.1146/annurev-biochem-060308-103103
[4] Liu XQ, Yu JS, Jiang L , et al. MicroRNA-222 regu-lates cell invasion by targeting matrix metallopro-teinase 1 (MMP1) and manganese superoxide dis-mutase 2 (SOD2) in tongue squamous cell carcinoma cell lines[J]. Cancer Genomics Proteomics, 2009,6(3):131-139.
[5] Wójcicka A, Kolanowska M, Jażdżewski K . Me-chanisms in endocrinology: microRNA in diagnostics and therapy of thyroid cancer[J]. Eur J Endocrinol, 2016,174(3):R89-R98.
doi: 10.1530/EJE-15-0647 pmid: 26503845
[6] Takasaki S . Roles of microRNAs in cancers and development[J]. Methods Mol Biol, 2015,1218:375-413.
doi: 10.1007/978-1-4939-1538-5
[7] Vasudevan S, Tong YC, Steitz JA . Switching from repression to activation: microRNAs can up-regulate translation[J]. Science, 2007,318(5858):1931-1934.
doi: 10.1126/science.1149460
[8] Fukumoto I, Hanazawa T, Kinoshita T , et al. Micro-RNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways[J]. Br J Cancer, 2015,112(5):891-900.
doi: 10.1038/bjc.2015.19 pmid: 4453953
[9] Manikandan M , Deva Magendhra Rao AK, Arun-kumar G, et al. Oral squamous cell carcinoma: micro-RNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism[J]. Mol Cancer, 2016,15:28.
doi: 10.1186/s12943-016-0512-8 pmid: 27056547
[10] Czech B, Hannon GJ . Small RNA sorting: matchma-king for argonautes[J]. Nat Rev Genet, 2011,12(1):19-31.
doi: 10.1038/nrg2916 pmid: 21116305
[11] Ha MJ, Kim VN . Regulation of microRNA bioge-nesis[J]. Nat Rev Mol Cell Biol, 2014,15(8):509-524.
doi: 10.1038/nrm3838 pmid: 25027649
[12] Lee Y, Ahn C, Han JJ , et al. The nuclear RNaseⅢdrosha initiates microRNA processing[J]. Nature, 2003,425(6956):415-419.
doi: 10.1038/nature01957
[13] Yeom KH, Lee Y, Han JJ , et al. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing[J]. Nucleic Acids Res, 2006,34(16):4622-4629.
doi: 10.1093/nar/gkl458 pmid: 1636349
[14] Chendrimada TP, Gregory RI, Kumaraswamy E , et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing[J]. Nature, 2005,436(7051):740-744.
doi: 10.1038/nature03868
[15] Jia LF, Wei SB, Gong K , et al. Prognostic implica-tions of micoRNA miR-195 expression in human tongue squamous cell carcinoma[J]. PLoS One, 2013,8(2):e56634.
doi: 10.1371/journal.pone.0056634 pmid: 3579853
[16] Jia LF, Wei SB, Gan YH , et al. Expression, re-gulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma[J]. Int J Cancer, 2014,135(10):2282-2293.
doi: 10.1002/ijc.28667 pmid: 24343426
[17] Li Y, Cai BL, Shen LL , et al. MiRNA-29b suppre-sses tumor growth through simultaneously inhibiting angiogenesis and tumorigenesis by targeting Akt3[J]. Cancer Lett, 2017,397:111-119.
doi: 10.1016/j.canlet.2017.03.032 pmid: 28365400
[18] Xu R, Zeng G, Gao J , et al. miR-138 suppresses the proliferation of oral squamous cell carcinoma cells by targeting Yes-associated protein 1[J]. Oncol Rep, 2015,34(4):2171-2178.
doi: 10.3892/or.2015.4144 pmid: 26239136
[19] Endo H, Muramatsu T, Furuta M , et al. Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer[J]. Carcinogenesis, 2013,34(3):560-569.
doi: 10.1093/carcin/bgs376 pmid: 23233740
[20] Rastogi B, Kumar A, Raut SK , et al. Downregulation of mir-377 promotes oral squamous cell carcinoma growth and migration by targeting HDAC9[J]. Cancer Invest, 2017,35(3):152-162.
doi: 10.1080/07357907.2017.1286669 pmid: 28267394
[21] Chi HY . miR-194 regulated AGK and inhibited cell proliferation of oral squamous cell carcinoma by reducing PI3K-Akt-FoxO3a signaling[J]. Biomed Pharmacother, 2015,71:53-57.
doi: 10.1016/j.biopha.2015.02.011 pmid: 25960215
[22] Xu P, Li Y, Zhang HY , et al. MicroRNA-340 me-diates metabolic shift in oral squamous cell car-cinoma by targeting glucose transporter-1[J]. J Oral Maxillofac Surg, 2016,74(4):844-850.
doi: 10.1016/j.joms.2015.09.038 pmid: 26541225
[23] Wang JH, Wang W, Li JC , et al. miR182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1[J]. Onco Targets Ther, 2017,10:667-679.
doi: 10.2147/OTT
[24] Cheng CM, Shiah SG, Huang C , et al. Up-regulation of miR-455-5p by the TGF-β-SMAD signalling axis promotes the proliferation of oral squamous cancer cells by targeting UBE2B[J]. J Pathol, 2016,240(1):38-49.
doi: 10.1002/path.4752 pmid: 27235675
[25] Liu ZM, Diep C, Mao TT , et al. MicroRNA-92b promotes tumor growth and activation of NF-κB signaling via regulation of NLK in oral squamous cell carcinoma[J]. Oncol Rep, 2015,34(6):2961-2968.
doi: 10.3892/or.2015.4323 pmid: 26503628
[26] Tian XG, Zeng G, Li X , et al. Cantharidin inhibits cell proliferation and promotes apoptosis in tongue squamous cell carcinoma through suppression of miR-214 and regulation of p53 and Bcl-2/Bax[J]. Oncol Rep, 2015,33(6):3061-3068.
doi: 10.3892/or.2015.3942 pmid: 25962755
[27] Thiery JP, Acloque H, Huang RY , et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009,139(5):871-890.
doi: 10.1016/j.cell.2009.11.007 pmid: 19945376
[28] Thiery JP, Sleeman JP . Complex networks orches-trate epithelial-mesenchymal transitions[J]. Nat Rev Mol Cell Biol, 2006,7(2):131-142.
doi: 10.1038/nrm1835 pmid: 16493418
[29] Lin ZY, Sun LJ, Chen WL , et al. miR-639 regulates transforming growth factor beta-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting FOXC1[J]. Cancer Sci, 2014,105(10):1288-1298.
doi: 10.1111/cas.12499 pmid: 4462345
[30] Chang CC, Yang Y, Li YJ , et al. MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma[J]. Oral Oncol, 2013,49(9):923-931.
doi: 10.1016/j.oraloncology.2013.03.430 pmid: 23602254
[31] Kuo YZ, Tai YH, Lo HI , et al. MiR-99a exerts anti-metastasis through inhibiting myotubularin-related protein 3 expression in oral cancer[J]. Oral Dis, 2014,20(3):e65-e75.
doi: 10.1111/odi.12133 pmid: 23731011
[32] He QT, Zhou XF, Li S , et al. MicroRNA-181a sup-presses salivary adenoid cystic carcinoma metastasis by targeting MAPK-Snai2 pathway[J]. Biochim Biophys Acta, 2013,1830(11):5258-5266.
doi: 10.1016/j.bbagen.2013.07.028 pmid: 23911747
[33] Qiu KF, Huang ZX, Huang ZQ , et al. miR-22 regu-lates cell invasion, migration and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma[J]. Arch Oral Biol, 2016,66:92-97.
doi: 10.1016/j.archoralbio.2016.02.013 pmid: 26943814
[34] Peng C, Liao YW, Lu MY , et al. Downregulation of miR-1 enhances tumorigenicity and invasiveness in oral squamous cell carcinomas[J]. J Formos Med Assoc, 2017,116(10):782-789.
doi: 10.1016/j.jfma.2016.12.003 pmid: 28089494
[35] Zeng Q, Tao XA, Huang F , et al. Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2[J]. Int J Mol Med, 2016,37(5):1274-1280.
doi: 10.3892/ijmm.2016.2529
[36] Hu J, Xu JF, Ge WL . MiR-497 enhances metastasis of oral squamous cell carcinoma through SMAD7 suppression[J]. Am J Transl Res, 2016,8(7):3023-3031.
pmid: 27508022
[37] Tu H, Chang KW, Cheng HW , et al. Upregulation of miR-372 and -373 associates with lymph node me-tastasis and poor prognosis of oral carcinomas[J]. Laryngoscope, 2015,125(11):E365-E370.
doi: 10.1002/lary.25464 pmid: 26152520
[38] Yang CN, Deng YT, Tang JY , et al. MicroRNA-29b regulates migration in oral squamous cell carcinoma and its clinical significance[J]. Oral Oncol, 2015,51(2):170-177.
doi: 10.1016/j.oraloncology.2014.10.017
[39] Ishigami T, Uzawa K, Higo M , et al. Genes and molecular pathways related to radioresistance of oral squamous cell carcinoma cells[J]. Int J Cancer, 2007,120(10):2262-2270.
doi: 10.1002/ijc.22561 pmid: 17290400
[40] Weng J, Yu C, Lee YC , et al. miR-494-3p induces cellular senescence and enhances radiosensitivity in human oral squamous carcinoma cells[J]. Int J Mol Sci, 2016,17(7). doi: 10.3390/ijms17071092.
doi: 10.3390/ijms17071092 pmid: 27399693
[41] Chang YC, Jan CI, Peng C , et al. Activation of micro-RNA-494-targeting Bmi1 and ADAM10 by silibinin ablates cancer stemness and predicts favourable pro-gnostic value in head and neck squamous cell car-cinomas[J]. Oncotarget, 2015,6(27):24002-24016.
[42] Chen D, Yan WX, Liu ZG , et al. Downregulation of miR-221 enhances the sensitivity of human oral squamous cell carcinoma cells to Adriamycin through upregulation of TIMP3 expression[J]. Biomed Phar-macother, 2016,77:72-78.
doi: 10.1016/j.biopha.2015.12.002 pmid: 26796268
[43] Jiang FF, Zhao W, Zhou LJ , et al. MiR-222 targeted PUMA to improve sensitization of UM1 cells to cisplatin[J]. Int J Mol Sci, 2014,15(12):22128-22141.
doi: 10.3390/ijms151222128 pmid: 4284698
[44] Fan S, Chen WX, Lv XB , et al. miR-483-5p deter-mines mitochondrial fission and cisplatin sensitivity in tongue squamous cell carcinoma by targeting FIS1[J]. Cancer Lett, 2015,362(2):183-191.
doi: 10.1016/j.canlet.2015.03.045 pmid: 25843291
[45] Zheng XQ, Li JS, Peng C , et al. MicroRNA-24 in-duces cisplatin resistance by targeting PTEN in hu-man tongue squamous cell carcinoma[J]. Oral Oncol, 2015,51(11):998-1003.
doi: 10.1016/j.oraloncology.2015.08.002 pmid: 26365986
[1] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[2] Li Liheng,Wang Rui,Wang Xiaoming,Zhang Zhiyi,Zhang Xuan,An Feng,Wang Qin,Zhang Fan. Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis [J]. Int J Stomatol, 2024, 51(1): 60-67.
[3] Wu Jiamin,Xia Bin,Yang Hefeng,Xu Biao.. Research progress on cancer-associated fibroblasts in the tumor microenvironment of oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(6): 711-717.
[4] Liu Jianglong, Tuerdi Maimaitituxun. Progress of contrast-enhanced ultrasound in the diagnosis of cervical lymph node metastasis from oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(5): 514-520.
[5] Sheng Nanning,Wang Jue,Nan Xinrong. Research progress on mechanism and treatment of sex-determining region Y box 9 in oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(3): 314-320.
[6] Li Tan,Liang Xin-hua.. Role of discoidin domain receptor 1 in the regulation of malignant tumor progression and therapy [J]. Int J Stomatol, 2023, 50(2): 230-236.
[7] Zhao Zhuoping,Xin Pengfei,Gao Yang,Zhang Caifeng,Zhang Kuanshou,Liu Qingmei. Research progress on the use of photothermal therapy to treat oral squamous cell carcinoma [J]. Int J Stomatol, 2022, 49(4): 462-470.
[8] Qian Suting,Ding Lingmin,Ji Yaning,Lin Jun.. Differential expression of microRNA in gingival crevicular fluid of periodontitis and its regulatory mechanism on periodontitis [J]. Int J Stomatol, 2022, 49(3): 349-355.
[9] Jiang Han,Shen Yingqiang,Chen Qianming. Experimental study of muscarinic receptors on the biological behavior of oral squamous cell carcinoma through Yes related protein signal [J]. Int J Stomatol, 2022, 49(2): 138-143.
[10] Ai Xiaoqing,Dou Lei,Qiao Xin,Yang Deqin. MicroRNA profile of exosomes derived from dental pulp stromal cells under three-dimensional culture condition [J]. Int J Stomatol, 2022, 49(1): 27-36.
[11] Jiang Yulei,Xia Bin,Rao Nanquan,Yang Hefeng,Xu Biao. Exosomes mediate the malignant progression of oral squamous cell carcinoma and its application in diagnosis and treatment [J]. Int J Stomatol, 2021, 48(6): 711-717.
[12] Qian Ying,Gong Jiaxing,Yu Mengfei,Liu Yu,Wei Dong,Zhu Ziyu,Lu Kejie,Wang Huiming. Diagnosis and treatment of ameloblastoma from molecular biology perspective [J]. Int J Stomatol, 2021, 48(5): 570-578.
[13] Gan Jianguo,Gao Pan,Wang Xiaoyi. Research progress on the relationship between circulating tumor cells and oral squamous cell carcinoma [J]. Int J Stomatol, 2021, 48(2): 205-212.
[14] Huang Junwen,Qiao Jie,Mei Zi,Chen Zhuo,Li Yang,Qiao Bin. Expression and clinical significance of lipopolysaccharide binding protein in oral squamous cell carcinoma [J]. Int J Stomatol, 2021, 48(1): 50-57.
[15] He Yuqing,Dan Hongxia,Chen Qianming. Application of photodynamic therapy for oral carcinogenesis prevention [J]. Int J Stomatol, 2020, 47(6): 669-676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .