Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (6): 646-651.doi: 10.7518/gjkq.2018.06.005
• RNA Research • Previous Articles Next Articles
CLC Number:
[1] |
Kozomara A, Griffiths-Jones S . Mirbase: annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Res, 2014,42(Database issue):D68-D73.
doi: 10.1093/nar/gkt1181 pmid: 24275495 |
[2] | Alvarez-Garcia I, Miska EA . MicroRNA functions in animal development and human disease[J]. De-velopment, 2005,132(21):4653-4662. |
[3] |
Fabian MR, Sonenberg N, Filipowicz W . Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010,79:351-379.
doi: 10.1146/annurev-biochem-060308-103103 |
[4] | Liu XQ, Yu JS, Jiang L , et al. MicroRNA-222 regu-lates cell invasion by targeting matrix metallopro-teinase 1 (MMP1) and manganese superoxide dis-mutase 2 (SOD2) in tongue squamous cell carcinoma cell lines[J]. Cancer Genomics Proteomics, 2009,6(3):131-139. |
[5] |
Wójcicka A, Kolanowska M, Jażdżewski K . Me-chanisms in endocrinology: microRNA in diagnostics and therapy of thyroid cancer[J]. Eur J Endocrinol, 2016,174(3):R89-R98.
doi: 10.1530/EJE-15-0647 pmid: 26503845 |
[6] |
Takasaki S . Roles of microRNAs in cancers and development[J]. Methods Mol Biol, 2015,1218:375-413.
doi: 10.1007/978-1-4939-1538-5 |
[7] |
Vasudevan S, Tong YC, Steitz JA . Switching from repression to activation: microRNAs can up-regulate translation[J]. Science, 2007,318(5858):1931-1934.
doi: 10.1126/science.1149460 |
[8] |
Fukumoto I, Hanazawa T, Kinoshita T , et al. Micro-RNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways[J]. Br J Cancer, 2015,112(5):891-900.
doi: 10.1038/bjc.2015.19 pmid: 4453953 |
[9] |
Manikandan M , Deva Magendhra Rao AK, Arun-kumar G, et al. Oral squamous cell carcinoma: micro-RNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism[J]. Mol Cancer, 2016,15:28.
doi: 10.1186/s12943-016-0512-8 pmid: 27056547 |
[10] |
Czech B, Hannon GJ . Small RNA sorting: matchma-king for argonautes[J]. Nat Rev Genet, 2011,12(1):19-31.
doi: 10.1038/nrg2916 pmid: 21116305 |
[11] |
Ha MJ, Kim VN . Regulation of microRNA bioge-nesis[J]. Nat Rev Mol Cell Biol, 2014,15(8):509-524.
doi: 10.1038/nrm3838 pmid: 25027649 |
[12] |
Lee Y, Ahn C, Han JJ , et al. The nuclear RNaseⅢdrosha initiates microRNA processing[J]. Nature, 2003,425(6956):415-419.
doi: 10.1038/nature01957 |
[13] |
Yeom KH, Lee Y, Han JJ , et al. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing[J]. Nucleic Acids Res, 2006,34(16):4622-4629.
doi: 10.1093/nar/gkl458 pmid: 1636349 |
[14] |
Chendrimada TP, Gregory RI, Kumaraswamy E , et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing[J]. Nature, 2005,436(7051):740-744.
doi: 10.1038/nature03868 |
[15] |
Jia LF, Wei SB, Gong K , et al. Prognostic implica-tions of micoRNA miR-195 expression in human tongue squamous cell carcinoma[J]. PLoS One, 2013,8(2):e56634.
doi: 10.1371/journal.pone.0056634 pmid: 3579853 |
[16] |
Jia LF, Wei SB, Gan YH , et al. Expression, re-gulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma[J]. Int J Cancer, 2014,135(10):2282-2293.
doi: 10.1002/ijc.28667 pmid: 24343426 |
[17] |
Li Y, Cai BL, Shen LL , et al. MiRNA-29b suppre-sses tumor growth through simultaneously inhibiting angiogenesis and tumorigenesis by targeting Akt3[J]. Cancer Lett, 2017,397:111-119.
doi: 10.1016/j.canlet.2017.03.032 pmid: 28365400 |
[18] |
Xu R, Zeng G, Gao J , et al. miR-138 suppresses the proliferation of oral squamous cell carcinoma cells by targeting Yes-associated protein 1[J]. Oncol Rep, 2015,34(4):2171-2178.
doi: 10.3892/or.2015.4144 pmid: 26239136 |
[19] |
Endo H, Muramatsu T, Furuta M , et al. Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer[J]. Carcinogenesis, 2013,34(3):560-569.
doi: 10.1093/carcin/bgs376 pmid: 23233740 |
[20] |
Rastogi B, Kumar A, Raut SK , et al. Downregulation of mir-377 promotes oral squamous cell carcinoma growth and migration by targeting HDAC9[J]. Cancer Invest, 2017,35(3):152-162.
doi: 10.1080/07357907.2017.1286669 pmid: 28267394 |
[21] |
Chi HY . miR-194 regulated AGK and inhibited cell proliferation of oral squamous cell carcinoma by reducing PI3K-Akt-FoxO3a signaling[J]. Biomed Pharmacother, 2015,71:53-57.
doi: 10.1016/j.biopha.2015.02.011 pmid: 25960215 |
[22] |
Xu P, Li Y, Zhang HY , et al. MicroRNA-340 me-diates metabolic shift in oral squamous cell car-cinoma by targeting glucose transporter-1[J]. J Oral Maxillofac Surg, 2016,74(4):844-850.
doi: 10.1016/j.joms.2015.09.038 pmid: 26541225 |
[23] |
Wang JH, Wang W, Li JC , et al. miR182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1[J]. Onco Targets Ther, 2017,10:667-679.
doi: 10.2147/OTT |
[24] |
Cheng CM, Shiah SG, Huang C , et al. Up-regulation of miR-455-5p by the TGF-β-SMAD signalling axis promotes the proliferation of oral squamous cancer cells by targeting UBE2B[J]. J Pathol, 2016,240(1):38-49.
doi: 10.1002/path.4752 pmid: 27235675 |
[25] |
Liu ZM, Diep C, Mao TT , et al. MicroRNA-92b promotes tumor growth and activation of NF-κB signaling via regulation of NLK in oral squamous cell carcinoma[J]. Oncol Rep, 2015,34(6):2961-2968.
doi: 10.3892/or.2015.4323 pmid: 26503628 |
[26] |
Tian XG, Zeng G, Li X , et al. Cantharidin inhibits cell proliferation and promotes apoptosis in tongue squamous cell carcinoma through suppression of miR-214 and regulation of p53 and Bcl-2/Bax[J]. Oncol Rep, 2015,33(6):3061-3068.
doi: 10.3892/or.2015.3942 pmid: 25962755 |
[27] |
Thiery JP, Acloque H, Huang RY , et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009,139(5):871-890.
doi: 10.1016/j.cell.2009.11.007 pmid: 19945376 |
[28] |
Thiery JP, Sleeman JP . Complex networks orches-trate epithelial-mesenchymal transitions[J]. Nat Rev Mol Cell Biol, 2006,7(2):131-142.
doi: 10.1038/nrm1835 pmid: 16493418 |
[29] |
Lin ZY, Sun LJ, Chen WL , et al. miR-639 regulates transforming growth factor beta-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting FOXC1[J]. Cancer Sci, 2014,105(10):1288-1298.
doi: 10.1111/cas.12499 pmid: 4462345 |
[30] |
Chang CC, Yang Y, Li YJ , et al. MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma[J]. Oral Oncol, 2013,49(9):923-931.
doi: 10.1016/j.oraloncology.2013.03.430 pmid: 23602254 |
[31] |
Kuo YZ, Tai YH, Lo HI , et al. MiR-99a exerts anti-metastasis through inhibiting myotubularin-related protein 3 expression in oral cancer[J]. Oral Dis, 2014,20(3):e65-e75.
doi: 10.1111/odi.12133 pmid: 23731011 |
[32] |
He QT, Zhou XF, Li S , et al. MicroRNA-181a sup-presses salivary adenoid cystic carcinoma metastasis by targeting MAPK-Snai2 pathway[J]. Biochim Biophys Acta, 2013,1830(11):5258-5266.
doi: 10.1016/j.bbagen.2013.07.028 pmid: 23911747 |
[33] |
Qiu KF, Huang ZX, Huang ZQ , et al. miR-22 regu-lates cell invasion, migration and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma[J]. Arch Oral Biol, 2016,66:92-97.
doi: 10.1016/j.archoralbio.2016.02.013 pmid: 26943814 |
[34] |
Peng C, Liao YW, Lu MY , et al. Downregulation of miR-1 enhances tumorigenicity and invasiveness in oral squamous cell carcinomas[J]. J Formos Med Assoc, 2017,116(10):782-789.
doi: 10.1016/j.jfma.2016.12.003 pmid: 28089494 |
[35] |
Zeng Q, Tao XA, Huang F , et al. Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2[J]. Int J Mol Med, 2016,37(5):1274-1280.
doi: 10.3892/ijmm.2016.2529 |
[36] |
Hu J, Xu JF, Ge WL . MiR-497 enhances metastasis of oral squamous cell carcinoma through SMAD7 suppression[J]. Am J Transl Res, 2016,8(7):3023-3031.
pmid: 27508022 |
[37] |
Tu H, Chang KW, Cheng HW , et al. Upregulation of miR-372 and -373 associates with lymph node me-tastasis and poor prognosis of oral carcinomas[J]. Laryngoscope, 2015,125(11):E365-E370.
doi: 10.1002/lary.25464 pmid: 26152520 |
[38] |
Yang CN, Deng YT, Tang JY , et al. MicroRNA-29b regulates migration in oral squamous cell carcinoma and its clinical significance[J]. Oral Oncol, 2015,51(2):170-177.
doi: 10.1016/j.oraloncology.2014.10.017 |
[39] |
Ishigami T, Uzawa K, Higo M , et al. Genes and molecular pathways related to radioresistance of oral squamous cell carcinoma cells[J]. Int J Cancer, 2007,120(10):2262-2270.
doi: 10.1002/ijc.22561 pmid: 17290400 |
[40] |
Weng J, Yu C, Lee YC , et al. miR-494-3p induces cellular senescence and enhances radiosensitivity in human oral squamous carcinoma cells[J]. Int J Mol Sci, 2016,17(7). doi: 10.3390/ijms17071092.
doi: 10.3390/ijms17071092 pmid: 27399693 |
[41] | Chang YC, Jan CI, Peng C , et al. Activation of micro-RNA-494-targeting Bmi1 and ADAM10 by silibinin ablates cancer stemness and predicts favourable pro-gnostic value in head and neck squamous cell car-cinomas[J]. Oncotarget, 2015,6(27):24002-24016. |
[42] |
Chen D, Yan WX, Liu ZG , et al. Downregulation of miR-221 enhances the sensitivity of human oral squamous cell carcinoma cells to Adriamycin through upregulation of TIMP3 expression[J]. Biomed Phar-macother, 2016,77:72-78.
doi: 10.1016/j.biopha.2015.12.002 pmid: 26796268 |
[43] |
Jiang FF, Zhao W, Zhou LJ , et al. MiR-222 targeted PUMA to improve sensitization of UM1 cells to cisplatin[J]. Int J Mol Sci, 2014,15(12):22128-22141.
doi: 10.3390/ijms151222128 pmid: 4284698 |
[44] |
Fan S, Chen WX, Lv XB , et al. miR-483-5p deter-mines mitochondrial fission and cisplatin sensitivity in tongue squamous cell carcinoma by targeting FIS1[J]. Cancer Lett, 2015,362(2):183-191.
doi: 10.1016/j.canlet.2015.03.045 pmid: 25843291 |
[45] |
Zheng XQ, Li JS, Peng C , et al. MicroRNA-24 in-duces cisplatin resistance by targeting PTEN in hu-man tongue squamous cell carcinoma[J]. Oral Oncol, 2015,51(11):998-1003.
doi: 10.1016/j.oraloncology.2015.08.002 pmid: 26365986 |