国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (5): 533-537.doi: 10.7518/gjkq.2017.05.008
潘佳慧, 唐秋玲, 李格格, 侯玉帛, 于维先
Pan Jiahui, Tang Qiuling, Li Gege, Hou Yubo, Yu Weixian
摘要:
牙龈卟啉单胞菌是牙周炎的主要致病菌,其侵袭牙周组织后引起大量炎症细胞浸润,并调控巨噬细胞极化,从而引发牙周组织的炎症反应。巨噬细胞具有很强的可塑性,在不同的微环境下可分化为具有不同表型和功能的细胞,此过程被称为巨噬细胞的极化。极化的巨噬细胞能够释放大量促炎因子,导致牙周组织的炎症反应,在牙周炎的发生、发展过程中起重要作用;同时又能产生某些杀菌物质,发挥其抗病原微生物的功能。本文就近年来巨噬细胞极化在牙周炎发生、发展过程中的作用进行综述。
中图分类号:
[1] Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Im-munol, 2011, 11(11):723-737. [2] Jagannathan R, Lavu V, Rao SR. Comparison of the proportion of non-classic (CD14+CD16+) mono-cytes/macrophages in peripheral blood and gingiva of healthy individuals and patients with chronic perio-dontitis[J]. J Periodontol, 2014, 85(6):852-858. [3] Gemmell E, McHugh GB, Grieco DA, et al. Costimu-latory molecules in human periodontal disease tissues [J]. J Periodontal Res, 2001, 36(2):92-100. [4] Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions[J]. Immunity, 2010, 32(5):593-604. [5] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity[J]. Nat Rev Immunol, 2011, 11(11):750-761. [6] Mège JL, Mehraj V, Capo C. Macrophage polariza-tion and bacterial infections[J]. Curr Opin Infect Dis, 2011, 24(3):230-234. [7] Hussain QA, McKay IJ, Gonzales-Marin C, et al. Detection of adrenomedullin and nitric oxide in dif-ferent forms of periodontal disease[J]. J Periodontal Res, 2016, 51(1):16-25. [8] Mylonas KJ, Jenkins SJ, Castellan RF, et al. The adult murine heart has a sparse, phagocytically active macrophage population that expands through mono-cyte recruitment and adopts an ‘M2’ phenotype in response to Th2 immunologic challenge[J]. Immuno-biology, 2015, 220(7):924-933. [9] Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds[J]. Biomaterials, 2015, 37:194-207. [10] Lam RS, O'Brien-Simpson NM, Lenzo JC, et al. Ma-crophage depletion abates Porphyromonas gingivalis - induced alveolar bone resorption in mice[J]. J Immunol, 2014, 193(5):2349-2362. [11] Hajishengallis G, Darveau RP, Curtis MA. The keys-tone-pathogen hypothesis[J]. Nat Rev Microbiol, 2012, 10(10):717-725. [12] Holden JA, Attard TJ, Laughton KM, et al. Porphyro - monas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but in-duces inflammatory cytokines[J]. Infect Immun, 2014, 82(10):4190-4203. [13] Mysak J, Podzimek S, Sommerova P, et al. Porphyro - monas gingivalis : major periodontopathic pathogen overview[J]. J Immunol Res, 2014, 163(3):234-243. [14] Jain S, Coats SR, Chang AM, et al. A novel class of lipoprotein lipase-sensitive molecules mediates Toll-like receptor 2 activation by Porphyromonas gin-givalis [J]. Infect Immun, 2013, 81(4):1277-1286. [15] Hajishengallis G. Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1):30-44. [16] Aalaei-andabili SH, Rezaei N. Toll like receptor (TLR)-induced differential expression of microRNAs (MiRs) promotes proper immune response against infections: a systematic review[J]. J Infect, 2013, 67(4):251-264. [17] Essandoh K, Fan GC. Role of extracellular and intra-cellular microRNAs in sepsis[J]. Biochim Biophys Acta, 2014, 1842(11):2155-2162. [18] Tipton DA, Cho S, Zacharia N, et al. Inhibition of interleukin-17-stimulated interleukin-6 and -8 pro-duction by cranberry components in human gingival fibroblasts and epithelial cells[J]. J Periodontal Res, 2013, 48(5):638-646. [19] Yamauchi K, Shibata Y, Kimura T, et al. Azithro-mycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-γ stimulated macro-phages[J]. Int J Biol Sci, 2009, 5(7):667-678. [20] Tipton DA, Babu JP, Dabbous MKh. Effects of cran-berry components on human aggressive periodontitis gingival fibroblasts[J]. J Periodontal Res, 2013, 48 (4):433-442. [21] Bostanci N, Belibasakis GN. Porphyromonas gin-givalis : an invasive and evasive opportunistic oral pathogen[J]. FEMS Microbiol Lett, 2012, 333(1):1-9. [22] Hajishengallis G. Immuno-microbial pathogenesis of periodontitis: keystones, pathobionts, and host re-sponse[J]. Trends Immunol, 2014, 35(1):3-11. [23] Wang M, Krauss JL, Domon H, et al. Microbial hijacking of complement-Toll-like receptor crosstalk [J]. Sci Signal, 2010, 3(109):ra11. [24] Hajishengallis G. Complement and periodontitis[J]. Biochem Pharmacol, 2010, 80(12):1992-2001. [25] Kolev M, Le Friec G, Kemper C. Complement—tapping into new sites and effector systems[J]. Nat Rev Immunol, 2014, 14(12):811-820. [26] Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway[J]. Curr Cancer Drug Targets, 2009, 9(2):237-249. [27] Quan JH, Chu JQ, Kwon J, et al. Intracellular networks of the PI3K/AKT and MAPK pathways for regulating Toxoplasma gondii -induced IL-23 and IL-12 pro-duction in human THP-1 cells[J]. PLoS One, 2015, 10(11):e0141550. [28] Hickey FB, Brereton CF, Mills KH. Adenylate cycalse toxin of Bordetella pertussis inhibits TLR-induced IRF-1 and IRF-8 activation and IL-12 production and enhances IL-10 through MAPK activation in dendritic cells[J]. J Leukoc Biol, 2008, 84(1):234-243. [29] Liang S,Krauss JL,Domon H, et al. The C5a rece-ptor impairs IL-12-dependent clearance of Porphy - romonas gingivalis and is required for induction of periodontal bone loss[J]. J Immunol, 2011, 186(2): 869-877. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[3] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[4] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[5] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[6] | 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126. |
[7] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[8] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[9] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[10] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[11] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[12] | 王冠儒,冯强. 牙龈卟啉单胞菌在阿尔兹海默症发生中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 397-403. |
[13] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[14] | 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316. |
[15] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
|