国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (5): 538-543.doi: 10.7518/gjkq.2017.05.009
王耀骏, 严斌, 王林
Wang Yaojun, Yan Bin, Wang Lin.
摘要: 牙周膜的形变与牙齿的移动联系密切,阐明两者之间的关系对于正畸治疗有很大帮助。建立牙周膜本构模型对研究牙周膜应力-应变关系有重要意义。线弹性、非线性等本构模型已被提出,但仍存在争议,主要原因是牙周膜体内、体外的实验数据不够精确。本文就牙周膜本构模型的种类,牙周膜相关体内、体外实验的进展作一综述,并进行了展望。
中图分类号:
[1] 顾永佳, 龚爱秀, 胡芳, 等. 含矫治器的下牙列及下颌骨三维有限元模型的建立[J]. 口腔医学, 2006, 26(2):121-123. Gu YJ, Gong AX, Hu F, et al. Establishment of three-dimensional finite element model of mandibular den-tition and mandible with incorporated appliances[J]. Stomatology, 2006, 26(2):121-123. [2] Grabber TM, Vanarsdall RL. Orthodontics: current principles and techniques[M]. 5th ed. St. Louis: Mos-by Yearbook, 2012. [3] Hohmann A, Kober C, Young P, et al. Influence of different modeling strategies for the periodontal liga-ment on finite element simulation results[J]. Am J Orthod Dentofacial Orthop, 2011, 139(6):775-783. [4] 朱智敏, 杜传诗, 陈孟涛, 等. 人牙周膜弹性模量的测定[J]. 华西医科大学学报, 1995, 26(2):160-162. Zhu ZM, Du CS, Chen MT, et al. Determination of modulus of elasticity of human periodontal mem-brane[J]. J WCUMS, 1995, 26(2):160-162. [5] Viecilli RF, Budiman A, Burstone CJ. Axes of resis-tance for tooth movement: does the center of resis-tance exist in 3-dimensional space[J]. Am J Orthod Dentofacial Orthop, 2013, 143(2):163-172. [6] Rawlinson A, Elcock C, Cheung A, et al. An in-vitro and in-vivo methodology study of alveolar bone mea-surement using extra-oral radiographic alignment apparatus, Image Pro-Plus software and a subtraction programme[J]. J Dent, 2005, 33(9):781-788. [7] Poppe M, Bourauel C, Jäger A. Determination of the elasticity parameters of the human periodontal liga-ment and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models[J]. J Orofac Orthop, 2002, 63(5):358-370. [8] Dorow C, Krstin N, Sander FG. Experiments to deter-mine the material properties of the periodontal liga-ment[J]. J Orofac Orthop, 2002, 63(2):94-104. [9] 黄辉祥, 汤文成, 吴斌, 等. 基于超弹性模型的牙周膜力学行为数值模拟[J]. 上海交通大学学报, 2014, 48(9):1263-1273. Huang HX, Tang WC, Wu B, et al. Numerical simu-lation of mechanical behaviors of periodontal ligament based on hyperelastic model[J]. J Shanghai Jiao Tong Univ, 2014, 48(9):1263-1273. [10] Natali AN, Pavan PG, Scarpa C. Numerical analysis of tooth mobility: formulation of a non-linear consti-tutive law for the periodontal ligament[J]. Dent Mater, 2004, 20(7):623-629. [11] 黄辉祥, 汤文成, 吴斌, 等. 基于超弹性模型的牙周膜生物力学响应[J]. 东南大学学报(自然科学版), 2013, 43(2):340-344. Huang HX, Tang WC, Wu B, et al. Biomechanical response for periodontal ligament based on hyperela-stic model[J]. J Southeast Univ(Nat Sci Ed), 2013, 43(2):340-344. [12] 魏志刚, 汤文成, 严斌, 等. 基于黏弹性模型的牙周膜生物力学研究[J]. 东南大学学报(自然科学版), 2009, 39(3):484-489. Wei ZG, Tang WC, Yan B, et al. Biomechanical ana-lysis of periodontal ligament based on viscoelastic model[J]. J Southeast Univ(Nat Sci Ed), 2009, 39 (3):484-489. [13] Tanaka E, Inubushi T, Takahashi K, et al. Dynamic shear properties of the porcine molar periodontal ligament[J]. J Biomech, 2007, 40(7):1477-1483. [14] Slomka N, Vardimon AD, Gefen A, et al. Time-related PDL: viscoelastic response during initial orthodontic tooth movement of a tooth with func-tioning interpro-ximal contact—a mathematical model[J]. J Biomech, 2008, 41(9):1871-1877. [15] 冯元桢. 连续介质力学初级教程[M]. 3版. 北京: 清华大学出版社, 2009:147-149. Feng YZ. A first course in continuum mechanics[M]. 3rd ed. Beijing: Tsinghua University Press, 2009:147- 149. [16] Papadopoulou K, Hasan I, Keilig L, et al. Biomecha-nical time dependency of the periodontal ligament: a combined experimental and numerical approach[J]. Eur J Orthod, 2013, 35(6):811-818. [17] Jónsdóttir SH, Giesen EB, Maltha JC. Biomechanical behaviour of the periodontal ligament of the Beagle dog during the first 5 hours of orthodontic force app-lication[J]. Eur J Orthod, 2006, 28(6):547-552. [18] Sanctuary CS, Wiskott HW, Justiz J, et al. In vitro time-dependent response of periodontal ligament to mechanical loading[J]. J Appl Physiol, 2005, 99(6): 2369-2378. [19] Qian L, Todo M, Morita Y, et al. Deformation analysis of the periodontium considering the viscoe-lasticity of the periodontal ligament[J]. Dent Mater, 2009, 25(3):1285-1292. [20] Fill TS, Toogood RW, Major PW, et al. Analytically determined mechanical properties of, and models for the periodontal ligament: critical review of literature [J]. J Biomech, 2012, 45(1):9-16. [21] Shibata T, Botsis J, Bergomi M, et al. Mechanical behavior of bovine periodontal ligament under ten-sion-compression cyclic displacements[J]. Eur J Oral Sci, 2006, 114(1):74-82. [22] Zhurov AI, Limbert G, Aeschlimann DP, et al. A con-stitutive model for the periodontal ligament as a com-pressible transversely isotropic visco-hyperelastic tissue[J]. Comput Methods Biomech Biomed Engin, 2007, 10(3):223-235. [23] Natali AN, Pavan PG, Venturato C, et al. Constitu-tive modeling of the non-linear viscoelasticity of the periodontal ligament[J]. Comput Methods Programs Biomed, 2011, 104(2):193-198. [24] Xia Z, Jiang F, Chen J. Estimation of periodontal ligament’s equivalent mechanical parameters for finite element modeling[J]. Am J Orthod Dentofacial Orthop, 2013, 143(4):486-491. [25] Fill TS, Carey JP, Toogood RW, et al. Experimentally determined mechanical properties of, and models for, the periodontal ligament: critical review of current literature[J]. J Dent Biomech, 2011, 2011:312980. [26] Toms SR, Dakin GJ, Lemons JE, et al. Quasi-linear viscoelastic behavior of the human periodontal liga-ment[J]. J Biomech, 2002, 35(10):1411-1415. [27] Komatsu K, Kanazashi M, Shimada A, et al. Effects of age on the stress-strain and stress-relaxation pro-perties of the rat molar periodontal ligament[J]. Arch Oral Biol, 2004, 49(10):817-824. [28] Pini M, Zysset P, Botsis J, et al. Tensile and com-pressive behaviour of the bovine periodontal liga-ment[J]. J Biomech, 2004, 37(1):111-119. [29] Ashrafi H, Shariyat M. A nanoindentation modeling of viscoelastic creep and relaxation behaviors of ligaments: mechanical characteristics of biological tissues[J]. Biomed Eng(ICBME), 2010, 1:1-5. [30] Dong-Xu L, Hong-Ning W, Chun-Ling W, et al. Modulus of elasticity of human periodontal ligament by optical measurement and numerical simulation[J]. Angle Orthod, 2011, 81(2):229-236. [31] 魏志刚, 汤文成, 严斌, 等. 正畸临床状态下的牙周组织力学响应分析[J]. 工程力学, 2012, 29(9):363- 368. Wei ZG, Tang WC, Yan B, et al. The study on bio-mechanical response of dental tissue in clinical con-dition[J]. Eng Mech, 2012, 29(9):363-368. [32] Brosh T, Porat N, Vardimon AD, et al. Appropria-teness of viscoelastic soft materials as in vitro simu-lators of the periodontal ligament[J]. J Oral Rehabil, 2011, 38(12):929-939. [33] Papadopoulou K, Keilig L, Eliades T, et al. The time-dependent biomechanical behaviour of the perio-dontal ligament—an in vitro experimental study in minipig mandibular two-rooted premolars[J]. Eur J Orthod, 2014, 36(1):9-15. [34] 王年斌, 徐超, 陈新民, 等. 新鲜牛牙周膜不同部位与弹性模量的关系研究[J]. 临床口腔医学杂志, 2011, 27(4):201-203. Wang NB, Xu C, Chen XM, et al. Study of the rela-tionship of the position of periodontal ligaments and the elastic modulus of fresh bovine periodontal liga-ments[J]. J Clin Stomatol, 2011, 27(4):201-203. [35] Komatsu K, Yamazaki Y, Yamaguchi S, et al. Com-parison of biomechanical properties of the incisor periodontal ligament among different species[J]. Anat Rec, 1998, 250(4):408-417. [36] Yoshida N, Koga Y, Peng CL, et al. In vivo measure-ment of the elastic modulus of the human periodontal ligament[J]. Med Eng Phys, 2001, 23(8):567-572. [37] Cronau M, Ihlow D, Kubein-Meesenburg D, et al. Biomechanical features of the periodontium: an ex-perimental pilot study in vivo [J]. Am J Orthod Dento-facial Orthop, 2006, 129(5):599.e513-599.e521. [38] Jones ML, Hickman J, Middleton J, et al. A validated finite element method study of orthodontic tooth movement in the human subject[J]. J Orthod, 2001, 28(1):29-38. [39] Drolshagen M, Keilig L, Hasan I, et al. Development of a novel intraoral measurement device to determine the biomechanical characteristics of the human periodontal ligament[J]. J Biomech, 2011, 44(11): 2136-2143. |
[1] | 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580. |
[2] | 查蕴宸,张佳佳,孔卫东. 原发性牙齿萌出障碍病因的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 386-391. |
[3] | 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527. |
[4] | 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660. |
[5] | 马心笛,陈蕾. 完全脱位牙再植的牙髓、牙周膜愈合:从生物学基础到牙外伤指南[J]. 国际口腔医学杂志, 2020, 47(3): 336-344. |
[6] | 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145. |
[7] | 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31. |
[8] | 王琳璇,王琦,赵云,米方林. 促红细胞生成素肝细胞激酶受体及其膜结合配体对牙槽骨改建作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 724-729. |
[9] | 贾凌璐, 文勇, 徐欣. 体外培养环境影响牙周膜干细胞生物学特性的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 255-260. |
[10] | 郝奕霖, 房付春, 吴补领. 微小RNA在人牙周膜来源细胞成骨分化中的作用[J]. 国际口腔医学杂志, 2018, 45(1): 46-49. |
[11] | 宿洪丽. 口腔正畸学临床教学方法改革探讨[J]. 国际口腔医学杂志, 2017, 44(1): 41-44. |
[12] | 王通,万乾炳. 牙根表面积测量方法的研究进展[J]. 国际口腔医学杂志, 2016, 43(4): 490-494. |
[13] | 吴凯悦,金晶,许春姣. Dickkopf 1与骨破坏性疾病的关系[J]. 国际口腔医学杂志, 2016, 43(4): 438-444. |
[14] | 伍栋,鲍光辉. 细胞外信号调节激酶1/2信号转导通路调控牙周膜细胞成骨分化的研究[J]. 国际口腔医学杂志, 2016, 43(3): 268-272. |
[15] | 潘有条,王一飞,赵洵,曾宪卓,张贞,程钧君,李夏宁,刘威,赵红宇. 微环境对牙周膜干细胞分化的抑制和诱导作用[J]. 国际口腔医学杂志, 2016, 43(2): 207-211. |
|