国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (1): 46-49.doi: 10.7518/gjkq.2018.01.009

• 综述 • 上一篇    下一篇

微小RNA在人牙周膜来源细胞成骨分化中的作用

郝奕霖, 房付春, 吴补领   

  1. 南方医科大学南方医院口腔科 广州 510515
  • 收稿日期:2017-05-11 修回日期:2017-10-20 出版日期:2018-01-01 发布日期:2018-01-01
  • 通讯作者: 吴补领,教授,博士,Email:bulingwu@smu.edu.cn
  • 作者简介:郝奕霖,硕士,Email:770716058@qq.com
  • 基金资助:
    国家自然科学基金(81600882); 广东省医学科学技术研究基金(A2016190)

Functions of microRNA on the osteogenic differentiation of human periodontal ligament-derived cells

Hao Yilin, Fang Fuchun, Wu Buling   

  1. Dept. of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
  • Received:2017-05-11 Revised:2017-10-20 Online:2018-01-01 Published:2018-01-01
  • Supported by:
    This work was supported by National Natural Science Foundation of China (81600882) and Medical Science and Technology Research Fundation of Guangdong Province (A2016190).

摘要: 人牙周膜来源细胞是一个异质性细胞群,能够分化成成骨细胞,参与牙槽骨改建、修复和牙周再生。微小RNA(miRNA)被认为在细胞调控分化进程中发挥了关键作用,也是维持细胞分化特性和调节分化的关键因子,miRNA靶向结合目的基因,通过上调或下调的调控方式产生促进或抑制成骨的作用。本文总结目前miRNA在人牙周膜来源细胞成骨分化过程中的相关研究,就miRNA在矿化或机械力诱导作用条件下可能发挥的功能、调控的靶基因及通路进行综述。

关键词: 微小RNA, 牙周膜干细胞, 牙周膜细胞, 成骨分化

Abstract: Human periodontal ligament-derived cells are a group of heterogeneous cells, which can differentiate into osteoblasts, participate in remodeling and repair of alveolar bone remodeling, and periodontal regeneration. MicroRNAs (miRNAs) are thought to play a key role in the regulation of cell differentiation and be key factors in maintaining cell differentiation and regulating differentiation. MicroRNA plays a promotion or inhibition role on osteogenic differentiation by targeting mRNA. In this review, we summarized the different miRNAs in the osteogenic differentiation of periodontal-derived cells, focusing on the function and regulation of target genes and pathways under the mineralized or mechanical force induced conditions.

Key words: microRNA, periodontal ligament stem cell, periodontal ligament cell, osteogenic differentiation

中图分类号: 

  • Q254
[1]Pihlstrom BL, Michalowicz BS, Johnson NW. Perio-dontal diseases[J]. Lancet, 2005, 366(9499):1809- 1820.
[2]Sanz AR, Carrión FS, Chaparro AP. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering[J]. Periodontol 2000, 2015, 67(1):251-267.
[3]Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429): 149-155.
[4]Kebschull M, Papapanou PN. Mini but mighty: microRNAs in the pathobiology of periodontal disease[J]. Periodontol 2000, 2015, 69(1):201-220.
[5]Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions[J]. Brief Bioinform, 2014, 15(1):1-19.
[6]Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies[J]. Trends Cell Biol, 2015, 25(3):137-147.
[7]Bak RO, Mikkelsen JG. miRNA sponges: soaking up miRNAs for regulation of gene expression[J]. Wiley Interdiscip Rev RNA, 2014, 5(3):317-333.
[8]Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian MicroRNAs on mRNA re-pression and evolution[J]. Science, 2005, 310(5755): 1817-1821.
[9]Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight[J]. Nat Rev Genet, 2008, 9(2):102-114.
[10]Hung PS, Chen FC, Kuang SH, et al. miR-146a in-duces differentiation of periodontal ligament cells[J]. J Dent Res, 2010, 89(3):252-257.
[11]Nakasa T, Shibuya H, Nagata Y, et al. The inhibitory effect of microRNA-146a expression on bone des-truction in collagen-induced arthritis[J]. Arthritis Rheum, 2011, 63(6):1582-1590.
[12]Li C, Li C, Yue J, et al. miR-21 and miR-101 re-gulate PLAP-1 expression in periodontal ligament cells[J]. Mol Med Rep, 2012, 5(5):1340-1346.
[13]Qi L, Zhang Y. The microRNA 132 regulates fluid shear stress-induced differentiation in periodontal ligament cells through mTOR signaling pathway[J]. Cell Physiol Biochem, 2014, 33(2):433-445.
[14]Chen Y, Mohammed A, Oubaidin M, et al. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells[J]. Gene, 2015, 566(1):13-17.
[15]Chang M, Lin H, Luo M, et al. Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells[J]. In Vitro Cell Dev Biol Anim, 2015, 51(8): 797-807.
[16]Liu Y, Liu W, Hu C, et al. MiR-17 modulates osteo-genic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from perio-dontal ligaments of patients with periodontitis[J]. Stem Cclls, 2011, 29(11):1804-1816.
[17]Liu W, Liu Y, Guo T, et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments[J]. Cell Death Dis, 2013, 4:e539.
[18]邓超, 伍燕, 杨琨, 等. 微小RNA-17在糖基化终末产物刺激下人牙周膜干细胞骨向分化过程中的调控作用[J]. 华西口腔医学杂志, 2015, 33(1):21-24. Deng C, Wu Y, Yang K, et al. Effect of microRNA- 17 on osteogenic differentiation of advanced glyca-tion end products-stimulated human perio-dontal ligament stem cells[J]. West Chin J Stomatol, 2015, 33(1):21-24.
[19]Gay I, Cavender A, Peto D, et al. Differentiation of human dental stem cells reveals a role for micro-RNA-218[J]. J Periodontal Res, 2014, 49(1):110- 120.
[20]Wei FL, Wang JH, Ding G, et al. Mechanical force-induced specific microRNA expression in human periodontal ligament stem cells[J]. Cells Tissues Organs, 2015, 199(5/6):353-363.
[21]Wei F, Liu D, Feng C, et al. MicroRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells[J]. Stem Cells Dev, 2015, 24(3):312-319.
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[3] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[4] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[5] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[6] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[7] 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36.
[8] 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744.
[9] 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527.
[10] 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660.
[11] 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615.
[12] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[13] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[14] 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83.
[15] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .